Advertisement

Dynamic Evolution of Open Spin Chain in Markovian Environment

  • Yong-Gan Zhao
  • Yi-Chong RenEmail author
  • Hong-Yi Fan
Article

Abstract

There have been numerous researches on spin chain while most are gathered in the thermal entanglement or the intrinsic decoherence of spin chain, and only few papers investigate the spin chain under dephasing channel. Thus the dynamics of open spin chain in thermal noises is desiderated to research. In this paper, the entanglement dynamics induced by 2-qubit anisotropy Heisenberg model that each qubit coupled with reservoir is investigated. The corresponding master equation is analytically solved by the new Ket-Bra Entangled State (KBES) method with computer; The evolution of entanglement is also analyzed in detail when initial state is described by Extended Wenger-Like(EWL) state. It’s found that the spin coupling can lead to the revival of entanglement; Besides the fluctuation frequency show a positive correlation with the coupling coefficient. The most distinguished discovery is that the system still keep part entangled even for time tend to infinity, which imply that people can inhibit the disentanglement process by internal interaction of system.

Keywords

Master equation Ket-Bra entangled state method Schrödinger-like equation XYZ Heisenberg chain 

Notes

References

  1. 1.
    Breuer, H.P.: The theory of open quantum system. Oxford University, Oxford (2002)zbMATHGoogle Scholar
  2. 2.
    Durr, D., Spohn, H.: Decoherence: theorical, Experimental and Conceptual Problems. Springer, Berlin (2000)Google Scholar
  3. 3.
    Jones, J.A., Jaksch, D.: Quantum Information, Computation and Communication. Cambridge University Press, England (2012)CrossRefGoogle Scholar
  4. 4.
    Lagmago Kamta, G., Anthony, F.: Starace, anisotropy and magnetic field effects on the entanglement of a two qubit heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Arnesen, M.C., et al.: Natural thermal and magnetic entanglement in the 1D heisenberg model. Phys Rev. Lett. 87, 017901 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Imamoglu, A., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Raussendorf, R., Briegel, H.J.: A One-Way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Loss, D., DiVincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Divincenzo, D.P., Bacon, D., Kempe, J., Burkard, G., Whaley, K.B.: Universal quantum computation with the exchange interaction. Nature 339, 408 (2000)Google Scholar
  11. 11.
    Yeo, Y.: Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain. Phys. Rev. A 66, 062312 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Zhang, G.-F.: Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction. Phys. Rev A 75, 034304 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, X., Fu, H.C., Solomon, A.I.: Thermal entanglement in three-qubit Heisenberg models. J. Phys. A: Math. Gen. 34, 11307 (2001)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Li, S.-B., Xu, J.-B.: Magnetic impurity effects on the entanglement of three-qubit Heisenberg XY chain with intrinsic decoherence. Phys. Lett. A 311, 313 (2003)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Ting, Y u, Eberly, J.H.: Quantum open system theory: Bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)CrossRefGoogle Scholar
  17. 17.
    Yu, T., Eberly, J.H.: Sudden death of entanglement, vol. 323 (2009)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum inverse scattering method and correlation function. Cambridge University Press, Cambridge (1993)Google Scholar
  19. 19.
    Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A, 77 (2008)Google Scholar
  20. 20.
    Risken, H.: The Fokker-Planck equation. Springer, Berlin (2012)Google Scholar
  21. 21.
    Moya-Cessa, Héctor: Decoherence in atom-field interactions: A treatment using superoperator techniques, vol. 432.1 (2006)Google Scholar
  22. 22.
    Rodney Truax, D.: Baker-campbell-hausdorff relations and unitarity of SU(2) and SU(1,1) squeeze operators. Phys. Rev. D 31, 1988 (1995)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lu, H.-X., Yang, J.: Algebraic approch to master equations with superoperator generators of su(1,1) and su(2) Lie algebras. Phys. Rev A 67, 024101 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Ren, Y.C., Wang, S, Fan, H.Y., et al.: Ket–Bra entangled state method for solving master equation of finite-level system[J]. Quantum Inf. Process. 16(11), 270 (2017)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Fan, H.Y., Hu, L.Y.: Operator-sum representation of density operators as solution to master equations botained via the entangled state approach. Mod. Phys. Lett. B 22, 2435 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefei CityChina
  2. 2.Key Laboratory of Atmospheric OpticsAnhui Institute of Optics and Fine Mechanics, Chinese Academy of ScienceHefeiChina
  3. 3.State Key Laboratory of Pulsed Power Laser TechnologyHefei CityChina

Personalised recommendations