Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4119–4138 | Cite as

Initial and Final State Temperatures of Antiproton Emission Sources in High Energy Collisions

  • Qi Wang
  • Fu-Hu LiuEmail author
Article

Abstract

The momentum or transverse momentum spectra of antiprotons produced at mid-rapidity in proton-helium (p+He), gold-gold (Au+Au), deuton-gold (d+Au), and lead-lead (Pb+Pb) collisions over an energy range from a few GeV to a few TeV are analyzed by the Erlang distribution, the inverse power-law (the Hagedorn function), and the blast-wave fit, or the superposition of two-component step function. The excitation functions of parameters such as the mean transverse momentum, initial state temperature, kinetic freeze-out temperature, and transverse flow velocity increase (slightly) from a few GeV to a few TeV and from peripheral to central collisions. At high energy and in central collisions, large collision energy is deposited in the system, which results in high degrees of excitation and expansion.

Keywords

Initial state temperature Final state temperature Erlang distribution Inverse power-law (Hagedorn function) Blast-wave fit 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575103 and 11847311, the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) under Grant No. 201802017, the Shanxi Provincial Natural Science Foundation under Grant No. 201701D121005, the Fund for Shanxi “1331 Project” Key Subjects Construction.

Compliance with Ethical Standards

The authors declare that they are in compliance with ethical standards regarding the content of this paper.

Conflict of interests

The authors declare that they have no conflict of interest regarding the publication of this paper.

References

  1. 1.
    Puglisi, A., Sarracino, A., Vulpiani, A.: Temperature in and out of equilibrium: a review of concepts, tools and attempts. Phys. Rep. 709, 1–60 (2017)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Bhattacharyya, T., Cleymans, J., Khuntia, A., et al.: Radial flow in non-extensive thermodynamics and study of particle spectra at LHC in the limit of small (q − 1). Eur. Phys. J. A52, 30 (2016)ADSGoogle Scholar
  3. 3.
    Song, H.-C., Zhou, Y., Gajdošová, K.: Collective flow and hydrodynamics in large and small systems at the LHC. Nucl. Sci. Tech. 28, 99 (2017)Google Scholar
  4. 4.
    Wei, H.-R., Liu, F.-H., Lacey, R.A.: Kinetic freeze-out temperature and flow velocity extracted from transverse momentum spectra of final-state light flavor particles produced in collisions at RHIC and LHC. Eur. Phys. J. A52, 102 (2016)ADSGoogle Scholar
  5. 5.
    Gao, L.-N., Liu, F.-H., Li, B.-C.: Rapidity dependent transverse momentum spectra of heavy quarkonia produced in small collision systems at the LHC. Adv. High Energy Phys. 2019, 6739315 (2019)Google Scholar
  6. 6.
    Liu, F.-H.: Particle production in Au-Au collisions at RHIC energies. Phys. Lett. B583, 68–72 (2004)ADSGoogle Scholar
  7. 7.
    Liu, F.-H., Li, J.-S.: Isotopic production cross section of fragments in 56Fe+p and 136Xe(124Xe)+Pb reactions over an energy range from 300A to 1500A MeV. Phys. Rev. C78, 044602 (2008)ADSGoogle Scholar
  8. 8.
    Liu, F.-H.: Unified description of multiplicity distributions of final-state particles produced in collisions at high energies. Nucl. Phys. A810, 159–172 (2008)ADSGoogle Scholar
  9. 9.
    Liu, F.-H., Gao, Y.-Q., Tian, T., Li, B.-C.: Unified description of transverse momentum spectrums contributed by soft and hard processes in high-energy nuclear collisions. Eur. Phys. J. A50, 94 (2014)ADSGoogle Scholar
  10. 10.
    Hagedorn, R.: Multiplicities, p T distributions and the expected hadron→quark-gluon phase transition. Riv. Nuovo Cimento 6(10), 1–50 (1983)MathSciNetGoogle Scholar
  11. 11.
    Abelev, B., et al.: (ALICE Collaboration): production of Σ(1385)± and Σ(1530)0 in proton-proton collisions at \(\sqrt {s}=7\) TeV. Eur. Phys. J. C75, 1 (2015)ADSGoogle Scholar
  12. 12.
    Schnedermann, E., Sollfrank, J., Heinz, U.: Thermal phenomenology of hadrons from 200A GeV S+S collisions. Phys. Rev. C48, 2462–2475 (1993)ADSGoogle Scholar
  13. 13.
    Abelev, B.I., et al.: (STAR Collaboration): systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C79, 034909 (2009)ADSGoogle Scholar
  14. 14.
    Abelev, B.I., et al.: (STAR Collaboration) Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at \(\sqrt {s_{NN}}=9.2\). GeV. Phys. Rev. C81, 024911 (2010)ADSGoogle Scholar
  15. 15.
    Tang, Z.-B., Xu, Y.-C., Ruan, L.-J., van Buren, G., Wang, F.-Q., Xu, Z.-B.: Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C79(R), 051901 (2009)ADSGoogle Scholar
  16. 16.
    Kittel, W., De Wolf, E.A.: Soft Multihadron Dynamics, p 652. World Scientific, Singapore (2005)Google Scholar
  17. 17.
    Sarkisyan, E.K.G., Sakharov, A.S.: On similarities of bulk observables in nuclear and particle collisions. CERN-PH-TH-2004-213 (2004), arXiv:hep-ph/0410324 (2004)
  18. 18.
    Sarkisyan, E.K.G., Sakharov, A.S.: Multihadron production features in different reactions. AIP Conf. Proc. 828, 35–41 (2006)ADSGoogle Scholar
  19. 19.
    Sarkisyan, E.K.G., Sakharov, A.S.: Relating multihadron production in hadronic and nuclear collisions. Eur. Phys. J. C70, 533–541 (2010)ADSGoogle Scholar
  20. 20.
    Nouicer, R.: Similarity of initial states in A+A and p+p collisions in constituent quarks framework. AIP Conf. Proc. 828, 11–16 (2006)ADSGoogle Scholar
  21. 21.
    Nouicer, R., for the PHOBOS Collaboration: Systematic of global observables in Cu+Cu and Au+Au collisions at RHIC energies. AIP Conf. Proc. 842, 86–88 (2006)ADSGoogle Scholar
  22. 22.
    Nouicer, R.: Charged particles multiplicities in A+A and p+p collisions in the constituent quarks framework. Eur. Phys. J. C49, 281–286 (2007)ADSGoogle Scholar
  23. 23.
    Grosse-Oetringhaus, J.F., Reygers, K.: Charged particle multiplicity in proton-proton collisions. J. Phys. G37, 083001 (2010)ADSGoogle Scholar
  24. 24.
    Sarkisyan, E.K.G., Mishra, A.N., Sahoo, R., Sakharov, A.S.: Multihadron production dynamics exploring the energy balance in hadronic and nuclear collisions. Phys. Rev. D93, 054046 (2016)ADSGoogle Scholar
  25. 25.
    Sarkisyan, E.K.G., Mishra, A.N., Sahoo, R., Sakharov, A.S.: Centrality dependence of midrapidity density from GeV to TeV heavy-ion collisions in the effective-energy universality picture of hadroproduction. Phys. Rev. D94(R), 011501 (2016)ADSGoogle Scholar
  26. 26.
    Mishra, A.N., Ortiz, A., Paić, G.: Intriguing similarities of high-p T particle production between pp and A-A collisions. Phys. Rev. C99, 034911 (2019)ADSGoogle Scholar
  27. 27.
    Aamodt, K., et al.: (ALICE Collaboration) Transverse momentum spectra of charged particles in proton-proton collisions at \(\sqrt {s}=900\) GeV with ALICE at the LHC. Phys. Lett. B693, 53–68 (2010)ADSGoogle Scholar
  28. 28.
    De Falco, A., for the ALICE Collaboration: Vector meson production in pp collisions at \(\sqrt {s}=7\) TeV, measured with the ALICE detector. J. Phys. G38, 124083 (2011)ADSGoogle Scholar
  29. 29.
    Abelev, B., et al.: (ALICE Collaboration): Light vector meson production in pp collisions at \(\sqrt {s}=7\) TeV. Phys. Lett. B710, 557–568 (2012)ADSGoogle Scholar
  30. 30.
    Adare, A., et al.: (PHENIX Collaboration): Nuclear modification factors of ϕ mesons in d+Au, Cu+Cu, and Au+Au collisions at \(\sqrt {s_{NN}}=200\) GeV. Phys. Rev. C83(83), 024909 (2011)ADSGoogle Scholar
  31. 31.
    Abelev, B., et al.: (ALICE Collaboration): Inclusive J/ψ production in pp collisions at \(\sqrt {s}=2.76\) TeV. Phys. Lett. B718, 295–306 (2012)ADSGoogle Scholar
  32. 32.
    Lakomov, I., for the ALICE Collaboration: Event activity dependence of inclusive J/ψ production in p-Pb collisions at \(\sqrt {s_{NN}}=5.02\) TeV with ALICE at the LHC. Nucl. Phys. A931, 1179–1183 (2014)ADSGoogle Scholar
  33. 33.
    Abelev, B., et al.: (ALICE Collaboration): Heavy flavour decay muon production at forward rapidity in proton-proton collisions at \(\sqrt {s}=7\) TeV. Phys. Lett. B708, 265–275 (2012)ADSGoogle Scholar
  34. 34.
    Lao, H.-L., Liu, F.-H., Li, B.-C., Duan, M.-Y.: Kinetic freeze-out temperatures in central and peripheral collisions: which one is larger? Nucl. Sci. Tech. 29, 82 (2018)Google Scholar
  35. 35.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, Germany and World Scientific, Sigapore (2009)Google Scholar
  36. 36.
    Gutay, L.G., Hirsch, A.S., Pajares, C., Scharenberg, R.P., Srivastava, B.K.: De-confinement in small systems: clustering of color sources in high multiplicity \(\bar p\)p collisions at \(\sqrt {s_{{{NN}}}}=1.8\) TeV. Int. J. Mod. Phys. E24, 1550101 (2015)ADSGoogle Scholar
  37. 37.
    Hirsch, A.S., Pajares, C., Scharenberg, R.P., Srivastava, B.K.: De-confinement in high multiplicity proton-proton collisions at LHC energies. arXiv:1803.02301[hep-ph] (2018)
  38. 38.
    Sahoo, P., De, S., Tiwari, S.K., Sahoo, R.: Energy and centrality dependent study of deconfinement phase transition in a color string percolation approach at RHIC energies. Eur. Phys. J. A54, 136 (2018)ADSGoogle Scholar
  39. 39.
    Aaij, R., et al.: (LHCb Collaboration) Measurement of antiproton production in pHe collisions at \(\sqrt {s_{{{NN}}}}=110\) GeV. Phys. R.v. Lett. 121, 222001 (2018)ADSGoogle Scholar
  40. 40.
    Graziani, G., for the LHCb Collaboration: Measurement of antiproton production in pHe collisions at \(\sqrt {s_{{{NN}}}}=110\) GeV. Conference report prepared for the 52nd Rencontres de Moriond on Electroweak Interactions and Unified Theories, 18–25 March 2017, La Thuile, Italy CERN-LHCb-CONF-2017-002 (2017)Google Scholar
  41. 41.
    Adamczyk, L., et al.: (STAR Collaboration): Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program. Phys. Rev. C96, 044904 (2017)ADSGoogle Scholar
  42. 42.
    Lao, H.-L., Liu, F.-H., Li, B.-C., Duan, M.-Y., Lacey, R.A.: Examining the model dependence of the determination of kinetic freeze-out temperature and transverse flow velocity in small collision system. Nucl. Sci. Tech. 29, 164 (2018)Google Scholar
  43. 43.
    Abelev, B., et al.: (ALICE Collaboration): Centrality dependence of π, K, and p production in Pb-Pb collisions at \(\sqrt {s_{{{NN}}}}=2.76\) TeV. Phys. Rev. C88, 044910 (2013)ADSGoogle Scholar
  44. 44.
    Li, L.-L., Liu, F.-H.: Excitation functions of kinetic freeze-out temperature and transverse flow velocity in proton-proton collisions. arXiv:1805.03342[hep-ph] (2018)
  45. 45.
    Li, L.-L., Liu, F.-H.: Energy dependent kinetic freeze-out temperature and transverse flow velocity in high energy collisions. Eur. Phys. J. A 54, 169 (2018)ADSGoogle Scholar
  46. 46.
    Waqas, M., Liu, F.-H., Fakhraddin, S., Rahim, M.A.: Possible scenarios for single, double, or multiple kinetic freeze-out in high-energy collisions. Indian J. Phys. 93,  https://doi.org/10.1007/s12648-019-01396-9 (2019)ADSGoogle Scholar
  47. 47.
    Lao, H.-L., Wei, H.-R., Liu, F.-H., Lacey, R.A.: An evidence of mass-dependent differential kinetic freeze-out scenario observed in Pb-Pb collisions at 2.76 TeV. Eur. Phys. J. A 52, 203 (2016)ADSGoogle Scholar
  48. 48.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)ADSMathSciNetzbMATHGoogle Scholar
  49. 49.
    Cleymans, J., Worku, D.: Relativistic thermodynamics: transverse momentum distributions in high-energy physics. Eur. Phys. J. A 48, 160 (2012)ADSGoogle Scholar
  50. 50.
    Zheng, H., Zhu, L.L.: Comparing the Tsallis distribution with and without thermodynamical description in p+p collisions. Adv. High Energy Phys. 2016, 9632126 (2016)Google Scholar
  51. 51.
    Gao, L.-N., Liu, F.-H., Lacey, R.A.: Excitation functions of parameters in Erlang distribution, Schwinger mechanism, and Tsallis statistics in RHIC BES program. Eur. Phys. J. A 52, 137 (2016)ADSGoogle Scholar
  52. 52.
    Lao, H.-L., Liu, F.-H., Lacey, R.A.: Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution. Eur. Phys. J. A 53, 44 (2017)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and State Key Laboratory of Quantum Optics and Quantum Optics DevicesShanxi UniversityTaiyuanChina

Personalised recommendations