Advertisement

Controlled Joint Remote Preparation of a Six-Qubit Cluster-Type State by Using GHZ States

  • Yi-you NieEmail author
  • Yi Qiao
  • Yuan-hua Li
  • Ming-huang Sang
Article

Abstract

A scheme for the controlled joint remote preparation of an arbitrary six-qubit cluster-type state by using only two sets of five-qubit GHZ states as quantum channel is proposed. In our scheme, Alice firstly performs two sets of two-qubit projective measurement according to the real coefficients and the complex coefficients of the desired six-qubit cluster-type state. Then, the controller Charlie must apply another two-qubit projective measurement according to the Alice’s measurement result. Finally, Bob can obtain the desired six-qubit cluster-type state according to an appropriate unitary operation. Our scheme can achieve unit success probability.

Keywords

Quantum information Controlled joint remote preparation Six-qubit cluster-type state 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11804135, 11764021, 11564018, 61765008, 11804133, 51567011), and the Research Foundation of the Education Department of Jiangxi Province (No. GJJ150339).

References

  1. 1.
    Leverrier, A.: Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction. Phys. Rev. Lett. 118, 200501 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Sibson, P., Kennard, J.E., Stanisic, S., Erven, C., O’Brien, J.L., Thompson, M.G.: Integrated silicon photonics for high-speed quantum key distribution. Optica. 4, 172 (2017)CrossRefGoogle Scholar
  3. 3.
    Li, Y.H., Xiang, T., Nie, Y.Y., et al.: Spectral compression of single-photon-level laser pulse. Sci. Rep. 7, 43494 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Ulanov, A.E., Sychev, D., Pushkina, A.A., Fedorov, I.A., Lvovsky, A.I.: Quantum teleportation between discrete and continuous encodings of an optical qubit. Phys. Rev. Lett. 118, 160501 (2017)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)CrossRefzbMATHGoogle Scholar
  6. 6.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Li, Y.H., Xiang, T., Nie, Y.Y., et al.: Nonlinear interaction between broadband single-photon-level coherent states. Photon. Res. 5, 324 (2017)CrossRefGoogle Scholar
  9. 9.
    Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grochowski, P.T., Rajchel, G., Kiałka, F., Dragan, A.: Effect of relativistic acceleration on continuous variable quantum teleportation and dense coding. Phys. Rev. D. 95, 105005 (2017)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Wei, J., Shi, L., Zhao, S., Zhuang, X., Han, Z., Kang, Q., Ni, Y., Li, N.: Controlled dense coding via partially entangled states and its quantum circuits. Int. J. Theor. Phys. 57, 1376–1383 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Oh, C., Kim, H., Jeong, K., Jeong, H.: Minimal control power of controlled dense coding and genuine tripartite entanglement. Sci. Rep. 7(3765), 3765 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A. 69, 022310 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    Zhao, H., Huang, L.: Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 56, 720–728 (2017)CrossRefzbMATHGoogle Scholar
  17. 17.
    Cai, T., Jiang, M.: Optimal joint remote state preparation of arbitrary equatorial multi-qudit states. Int. J. Theor. Phys. 56, 781–786 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Xiao, X.Q., Yao, F., Lin, X., Gong, L.: Joint remote state preparation of a single-atom qubit state via a GHZ entangled state. Int. J. Theor. Phys. 57, 1132–1140 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two-and three-qubit states. J. Phys. B-At. Mol. Opt. 44, 075501 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Li, W., Chen, H., Liu, Z.: Deterministic joint remote preparation of arbitrary four-qubit cluster-type state using EPR pairs. Int. J. Theor. Phys. 56, 351–361 (2017)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yi-you Nie
    • 1
    • 2
    Email author
  • Yi Qiao
    • 1
    • 2
  • Yuan-hua Li
    • 1
    • 2
  • Ming-huang Sang
    • 1
    • 2
  1. 1.Department of physicsJiangxi Normal UniversityNanchangChina
  2. 2.Key Laboratory of Optoelectronic and Telecommunication of Jiangxi provinceNanchangChina

Personalised recommendations