International Journal of Theoretical Physics

, Volume 58, Issue 12, pp 4033–4041 | Cite as

Dynamics of Atomic Entanglement in Double Jaynes-Cummings Models Containing Λ-Type Three-Level Atoms with the Dissipation of Two Cavities

  • Qin Xie
  • Jiang HuangEmail author


We consider two separated single mode dissipative cavities each containing a Λ-type three-level atom. The fields in cavities are both initially prepared in the coherent states, and the two Λ-type three-level atoms are initially prepared in the state \(|{\Psi }\rangle =\frac {1}{\sqrt {2}}(|ee\rangle +|gg\rangle )\). The result shows that, the entanglement between the two Λ-type three-level atoms decays to a steady value after a period of time of oscillations. And compared with entanglement of two-level atoms, the entanglement of the Λ-type three-level atoms is more stable and robust. We also show the impact of some parameters on the steady entanglement between the two atoms and the entanglement decreases most slowly for \(\varsigma \rightarrow 1\).


Entanglement Quantum conditional entropy Dissipation 



Projects supported by the natural science foundation of Guangdong province(Grants No.2015A030310354), the Foundation of Excellent-Young-Backbone Teacher of Guangdong Ocean University (Grants No.HDYQ2017005), the projection of characteristic innovation(Grants No.Q18267) and the scholar of south China sea.


  1. 1.
    Charles, H.B., Gilles, B., Claude, C., et al.: . Phys Rev Lett. 70, 1895 (1993)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Artur, K.E.: Quantum Crytography Based on Bell’s Theorem [J]. Phys Rev Lett. 67, 661 (1991)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Luo, Z.C., Devetak, I.: Efficiently implementable codes for quantum key expansion [J]. Phys. Rev. A. 75, 010303 (2007)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Graeme, S., John, A.S.: Degenerate quantum codes for Pauli channels [J]. Phys. Rev. Lett. 98, 030501 (2007)CrossRefGoogle Scholar
  5. 5.
    Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein Podolsky Rosen pairs [J]. Phys. Lett. A. 359, 359–365 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Tycho, S., Harald, W.: Realizable universal quantum logic gates [J]. Phys. Rev. Lett. 74, 4087–4090 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, S.B., Xu, J.B.: . Phys. Rev. A. 72, 022332 (2005)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, G.X., Allaart, K., Lenstra, D: . Phys Rev A. 69, 055802 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Duan, L.M., Guo, G.C.: . Phys. Rev. Lett. 79, 1953 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Lidar, D.A., Chuang, I.L., Whaley, K.B.: . Phys Rev Lett. 81, 2594 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Sancho, P.: Entanglement, identity, and disentanglement in two-atom spontaneous emission [J]. Phys. Rev. A. 95, 032116 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Radiatiove process of two entanglement atom in desitter spacetime [J]. Phys. Rev. D. 97, 105030 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Yang, Y.Q., Hu, J.W., Yu, H.W.: entanglement dynamics for uniformly accelerrated two-level atoms coupled with electromagnetic vacuum fluctuations [J]. Phys. Rev. A. 94, 032337 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Jacob, P., Lvaylo, S., Madjarov, A.C, Manuel, E: 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays [J]. Phys. Rev. Lett. 122, 173201 (2019)CrossRefGoogle Scholar
  15. 15.
    Alexandre, E., Vasiliy, M., Thomas, C., Leonid, A., et al.: Enhanced magnietic sensitivity with non-Gaussian quantum fluctuations [J]. Phys. Rev. Lett. 122, 173601 (2019)CrossRefGoogle Scholar
  16. 16.
    Michael, M., Llya, S., Francesco, P.: Dynamics and thermalization in a simple mesoscopic fermionic bath[J]. Phys. Rev. A. 99, 052102 (2019)ADSCrossRefGoogle Scholar
  17. 17.
    Isabel, S., Gunnar, B.: . Phys. Rev. A. 76, 042313 (2007)CrossRefGoogle Scholar
  18. 18.
    Stanley, C., Reid, M.D., Ficek, Z.: Entanglement evolution of two remote and non-identical Jaynes-Cummings atoms. J. Phys. 42, 065507 (2009)ADSGoogle Scholar
  19. 19.
    Chen, Q.H., Yang, Y., Liu, T., Wang, K.L.: . Phys. Rev. A. 82, 052306 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Cui, H.P., Li, J., Jin, L., Li, J.G.: . Commun. Theor. Phys. 51, 509–513 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Zhou, B.J., Liu, X.J., Fang, M.F., et al: Information entropy squeezing of the atom of an arbitrary initial state via the two—photon process[J]. Acta Phys. Sin. 55, 704–709 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electronics and Information EngineeringGuangdong Ocean UniversityZhanjiangChina

Personalised recommendations