Continuous Variable Quantum Secret Sharing with Chinese Remainder Theorem

  • Ye Kang
  • Qin LiaoEmail author
  • Jian Geng
  • Ying Guo


Motivated by the structure characteristics of Chinese Remainder Theorem(CRT), a continuous variable quantum secret sharing scheme is proposed to ensure the security of the network-based communication system. The initial secret is decomposed and recovered by solving the equations of CRT which provides various threshold structures to enhance the universality, flexibility and practicability of the scheme. The shares are encoded to two-mode squeezed vacuum state by displacement operation for secret distributing. Compared with the discrete variable quantum secret sharing, this scheme can increase the transmission capacity due to the improved data-processing for quantum state generation, manipulation, and detection. The security analysis is elucidated by calculating the bit error rates(BERs) under different conditions and it demonstrates that the scheme has the capability to protect secrets from eavesdropping of dishonest players no matter with the channel transmission efficiency.


Quantum secret sharing Chinese remainder theory Two-mode squeezed vacuum state 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61401519, 61872390, 61871407), the Natural Science Foundation of Hunan Province (2017JJ3415).


  1. 1.
    Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5–6), 420–424 (2004)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Zhang, Z.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1–2), 55–58 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Qin, H., Tso, R.: Efficient quantum secret sharing based on special multi-dimensional GHZ state. Opt. Quant. Electron. 50(4), 167 (2018)CrossRefGoogle Scholar
  8. 8.
    Khakbiz, P., Asoudeh, M.: Sequential quantum secret sharing in noisy environments. Quantum Inf. Process 18(1), 11 (2019)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Guo, Y., Liao, Q., Huang, D., Zeng, G.: Quantum relay schemes for continuous-variable quantum key distribution. Phys. Rev. A 95, 042326 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    Guo, Y., Xie, C., Huang, P., Li, J., Zhang, L., Huang, D., Zeng, G.: Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Phys. Rev. A 97(5), 052326 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99(3), 032327 (2019)ADSCrossRefGoogle Scholar
  12. 12.
    Vaidman, L.: Teleportation of quantum state. Phys. Rev. A 49(2), 1473 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80(4), 869 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., et al.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Lloyd, S., Braunstein, S.L.: Quantum Computation over Continuous variables//Quantum Information with Continuous Variables, pp 9–17. Springer, Dordrecht (1999)CrossRefGoogle Scholar
  16. 16.
    Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Modern Phys. 90(1), 015002 (2018)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Feng, Y., Shi, R., Zhou, J., Liao, Q., Guo, Y.: Quantum byzantine agreement with tripartite entangled states. Int. J. Theor. Phys., 1–17 (2019)Google Scholar
  18. 18.
    Feng, Y., Shi, R., Guo, Y.: Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states. Chin. Phy. B 27(2), 020302 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Guo, Y., Feng, Y., Zeng, G.: Quantum anonymous voting with unweighted continuous-variable graph states. Quantum. Inf. Process 15(8), 3327–3345 (2016)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65(4), 042310 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    Lance, A.M., Symul, T., Bowen, W.P., et al.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Zhou, N., Song, H., Gong, L.: Continuous variable quantum secret sharing via quantum teleportation. Int. J. Theor. Phys. 52(11), 4174–4184 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhou, Y., Yu, J., Yan, Z., et al.: Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett. 121(15), 150502 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Shi, R., Su, Q., Guo, Y., et al.: Quantum secret sharing based on chinese remainder theorem. Commun. Theor. Phys. 55(4), 573 (2011)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Guo, Y., Zhao, Y.: High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis. Quantum Inf. Process 12(2), 1125–1139 (2013)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inform. Theory 29(2), 208–210 (1983)MathSciNetCrossRefGoogle Scholar
  27. 27.
    He, G., Zhu, J., Zeng, G.: Quantum secure communication using continuous variable Einstein-Podolsky-Rosen correlations. Phys. Rev. A 73(1), 012314 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ComputerCentral South UniversityChangshaChina
  2. 2.College of Computer Science and Electronic EngineeringHunan UniversityChangshaChina

Personalised recommendations