A Cost-Aware Efficient RAM Structure Based on Quantum-Dot Cellular Automata Nanotechnology

  • Mohammad Heydari
  • Zhou XiaohuEmail author
  • Kin Keung Lai
  • S. Afro


Nowadays quantum-dot cellular automata (QCA) as a nanoscale transistor-less device technology have attained major attention for their prominent features. The circuits constructed by QCA technology owning remarkable decreasing in size, fast switching speed and ultra-low energy consumption. These features can be more different in varied memory structures. Random access memory (RAM) is a kind of data storage devices that allows data to be read or written it’s generally volatile, and used for data that change often. Due to the significance of memory in a digital system, designing and optimization of high-speed RAM in QCA nanotechnology is a substantial subject. So, this paper presents a new structure for QCA-based RAM cell by employing the 3-input rotated majority gate (RMG). Eventually, 1 × 4 RAM is designed by exerting the individual memory cell. The functionality of the proposed design is implemented and assessed using the QCADesigner simulator. The obtained results demonstrated that the designed QCA-based RAM cell is superior to previous structures in terms of delay and cell count.


Nanotechnology Quantum dot cellular automata RAM QCA SR-latch Cost 



  1. 1.
    Farhangian, H., Abrishamifar, S.M., Palizian, M., Janghorban Lariche, M., Baghban, A.: The application of nanofluids for recovery of asphaltenic oil. Pet. Sci. Technol. 36(4), 287–292 (2018)CrossRefGoogle Scholar
  2. 2.
    Hosseini, M., Kahkha, M.R.R., Fakhri, A., Tahami, S., Lariche, M.J.: Degradation of macrolide antibiotics via sono or photo coupled with Fenton methods in the presence of ZnS quantum dots decorated SnO2 nanosheets. J. Photochem. Photobiol. B Biol. 185, 24–31 (2018)CrossRefGoogle Scholar
  3. 3.
    Lariche, M.J., et al.: Developing supervised models for estimating methylene blue removal by silver nanoparticles. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1–8 (2019)Google Scholar
  4. 4.
    Zuo, X., Behradfar, K., Liu, J.-B., Lariche, M.J., Najafi, M.: Theoretical study of ability of boron nitride nanocone to oxidation of sulfur monoxide. Acta Chim. Slov. 65(2), 296–302 (2018)CrossRefGoogle Scholar
  5. 5.
    Azimi, S., Angizi, S., Moaiyeri, M.H.: Efficient and robust SRAM cell design based on quantum-dot cellular automata. ECS Journal of Solid State Science and Technology. 7(3), Q38–Q45 (2018)CrossRefGoogle Scholar
  6. 6.
    Chaharlang, J., Mosleh, M.: An overview on RAM memories in QCA technology. Majlesi Journal of Electrical Engineering. 11(2), (2017)Google Scholar
  7. 7.
    Ying, Z., Zhong, Y., DENG, P.-m.: On behavior of two-dimensional cellular automata with an exceptional rule under periodic boundary condition. The Journal of China Universities of Posts and Telecommunications. 17(1), 67–72 (2010)CrossRefGoogle Scholar
  8. 8.
    Sen, B., Dutta, M., Some, S., Sikdar, B.K.: Realizing reversible computing in QCA framework resulting in efficient design of testable ALU. ACM J. Emerg. Technol. Comput. Syst. (JETC). 11(3), 30 (2014)Google Scholar
  9. 9.
    Abutaleb, M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)CrossRefGoogle Scholar
  10. 10.
    Moghaddam, M., Moaiyeri, M.H., Eshghi, M.: Design and evaluation of an efficient schmitt trigger-based hardened latch in CNTFET technology. IEEE Trans. Device Mater. Reliab. 17(1), 267–277 (2017)CrossRefGoogle Scholar
  11. 11.
    Seyedi, S., Navimipour, N.J.: Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata. Nano Communication Networks. 16, 1–9 (2018)CrossRefGoogle Scholar
  12. 12.
    Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24(2), 1295–1305 (2018)CrossRefGoogle Scholar
  13. 13.
    Afrooz, S., Navimipour, N.J.: Memory designing using quantum-dot cellular automata: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers. 26(12), 1730004 (2017)CrossRefGoogle Scholar
  14. 14.
    Afrooz, S., Navimipour, N.J.: Fault-tolerant Design of a Shift Register at the nanoscale based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(9), 2598–2614 (2018)CrossRefGoogle Scholar
  15. 15.
    Roshan, M.G., Gholami, M.: Novel D latches and D flip-flops with set and reset ability in QCA nanotechnology using minimum cells and area. Int. J. Theor. Phys. 57(10), 3223–3241 (2018)CrossRefGoogle Scholar
  16. 16.
    Sen, B., Goswami, M., Mazumdar, S., Sikdar, B.K.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Abdullah-Al-Shafi and A. N. Bahar, "QCA: an Effective Approach to Implement Logic Circuit in Nanoscale," in Informatics, Electronics and Vision (ICIEV), 2016 5th International Conference on, 2016: IEEE, pp. 620–624Google Scholar
  18. 18.
    Divshali, M.N., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik-International Journal for Light and Electron Optics. 158, 243–256 (2018)CrossRefGoogle Scholar
  20. 20.
    Seyedi, S., Navimipour, N.J.: An optimized three-level Design of Decoder Based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 1–12 (2018)Google Scholar
  21. 21.
    Heikalabad, S.R., Navin, A.H., Hosseinzadeh, M.: Content addressable memory cell in quantum-dot cellular automata. Microelectron. Eng. 163, 140–150 (2016)CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Xie, G., Cheng, X., Zhang, Z., Lv, H.: The implementation of I/O Interface in quantum-dot cellular automata. Optik. 166, 177–188 (2018)ADSCrossRefGoogle Scholar
  23. 23.
    Hamian, M., Darvishan, A., Hosseinzadeh, M., Lariche, M.J., Ghadimi, N., Nouri, A.: A framework to expedite joint energy-reserve payment cost minimization using a custom-designed method based on mixed integer genetic algorithm. Eng. Appl. Artif. Intell. 72, 203–212 (2018)CrossRefGoogle Scholar
  24. 24.
    Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M., Ghadimi, N.: Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Appl. Therm. Eng. 137, 395–405 (2018)CrossRefGoogle Scholar
  25. 25.
    Akbary, P., Ghiasi, M., Pourkheranjani, M.R.R., Alipour, H., Ghadimi, N.: Extracting appropriate nodal marginal prices for all types of committed reserve. Comput. Econ. 1–26 (2017)CrossRefGoogle Scholar
  26. 26.
    Gollou, A.R., Ghadimi, N.: A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets. J. Intell. Fuzzy Syst. 32(6), 4031–4045 (2017)CrossRefGoogle Scholar
  27. 27.
    Ebrahimian, H., Barmayoon, S., Mohammadi, M., Ghadimi, N.: The price prediction for the energy market based on a new method. Economic Research-Ekonomska istraživanja. 31(1), 313–337 (2018)CrossRefGoogle Scholar
  28. 28.
    Kreindl G., Miller R., Thanner C., Schachinger M, Hangweier P., High throughput parallel micro and nano-scale replication-a low cost alternative for the fabrication of electronic-, optic-and microfluidic devices. In 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO), 2012: IEEE, pp. 1–7Google Scholar
  29. 29.
    Meena B.: Low Cost Flexible Electronic Devices by Use of Functional Nano-Inks, (2018)Google Scholar
  30. 30.
    Sasamal T. N., Singh A. K., Ghanekar U.: Design of QCA-based D Flip flop and memory cell using rotated majority gate, in Smart Innovations in Communication and Computational Sciences: Springer, 2019, pp. 233–247Google Scholar
  31. 31.
    Taskin, B., Hong, B.: Improving line-based QCA memory cell design through dual phase clocking. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 16(12), 1648–1656 (2008)CrossRefGoogle Scholar
  32. 32.
    Dehkordi, M.A., Shamsabadi, A.S., Ghahfarokhi, B.S., Vafaei, A.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42(5), 701–708 (2011)CrossRefGoogle Scholar
  33. 33.
    Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 1–11 (2018)Google Scholar
  34. 34.
    Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)CrossRefGoogle Scholar
  35. 35.
    Asfestani, M.N., Heikalabad, S.R.: A novel multiplexer-based structure for random access memory cell in quantum-dot cellular automata. Phys. B Condens. Matter. 521, 162–167 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    S. Pratibha, T. V. Kumar, and P. Sharan: An efficient design of QCA based memory," in Computing for Sustainable Global Development (INDIACom), 2016 3rd International Conference on, 2016: IEEE, pp. 2750–2753Google Scholar
  37. 37.
    Kianpour M., Sabbaghi-Nadooshan R.: A novel design and simulation of 16 bits RAM implementation in quantum-dot cellular automata (QCA), in 2012 16th IEEE Mediterranean Electrotechnical Conference, 2012: IEEE, pp. 637–640Google Scholar
  38. 38.
    Rad, S.K., Heikalabad, S.R.: Reversible flip-flops in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2990–3004 (2017)CrossRefGoogle Scholar
  39. 39.
    Huang, J., Momenzadeh, M., Lombardi, F.: Design of sequential circuits by quantum-dot cellular automata. Microelectron. J. 38(4–5), 525–537 (2007)CrossRefGoogle Scholar
  40. 40.
    Sherizadeh, R., Navimipour, N.J.: Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik-International Journal for Light and Electron Optics. 158, 477–489 (2018)CrossRefGoogle Scholar
  41. 41.
    Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Khan A., Mandal S., Nag S., Chakrabarty R.: Efficient multiplexer design and analysis using quantum dot cellular automata, in Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), IEEE, 2016: IEEE, pp. 163–168Google Scholar
  43. 43.
    Hashemi, S., Navi, K.: New robust QCA D flip flop and memory structures. Microelectron. J. 43(12), 929–940 (2012)CrossRefGoogle Scholar
  44. 44.
    Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results in Physics. 7, 3543–3551 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13(3), 476–487 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Chabi A. M., Roohi A., DeMara R. F., Angizi S., Navi K., Khademolhosseini H.: Cost-Efficient QCA Reversible Combinational Circuits Based on a New Reversible Gate. In Computer Architecture and Digital Systems (CADS), 2015 18th CSI International Symposium on, 2015: IEEE, pp. 1–6Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohammad Heydari
    • 1
  • Zhou Xiaohu
    • 1
    Email author
  • Kin Keung Lai
    • 2
  • S. Afro
    • 3
  1. 1.School of Economics and ManagementNanjing University of Science and TechnologyNanjingChina
  2. 2.College of EconomicsShenzhen UniversityShenzhenChina
  3. 3.M.Sc. in Computer EngineeringScience and Technology ResearcherBeijingChina

Personalised recommendations