International Journal of Theoretical Physics

, Volume 58, Issue 11, pp 3899–3907 | Cite as

Quantum Teleportation under Different Local Independent Noise Environment

  • Li-Nan JiangEmail author


We study the average fidelity of the standard quantum teleportation when the quantum channel is subjected to different local independent noise environments frequently encountered in real quantum communication protocol. We show that only \( \left|{\mathrm{Bell}}_1\right\rangle =\frac{1}{\sqrt{2}}\left(\left|00\right\rangle +\left|11\right\rangle \right) \) is the best quantum channel in different independent noise environments, even in the depolaring noise environment. Our work can shed some light on the application of practical standard quantum teleportation protocol.


Teleportation Quantum master equation Average fidelity Independent quantum noise environment 



This work was supported by the Doctoral Research Funding of Northeast Electric Power University under Grant No. BSJXM-201426 and the Distinguished Young Scholars Project of Jilin City Science and Technology Bureau under Grant No. 20166001.


  1. 1.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Braunstein, S.L., Kimble, H.J.: Teleportation of Continuous Quantum Variables. Phys. Rev. Lett. 80, 869–872 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Boschi, D., Branca, S., DeMartini, F., Hardy, L., Popescu, S.: Phys. Rev. Lett. 80, 1121 (1998)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Science. 282, 706 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    Jiang, L.N., Zhang, J.L., Ma, J., Yu, S.Y., Han, Q., Li, B.: Int. J. Theor. Phys. 53, 942–951 (2014)CrossRefGoogle Scholar
  6. 6.
    Jiang, L.N., Ma, J., Yu, S.Y., Tan, L.Y., Ran, Q.W.: Int. J. Theor. Phys. 54, 440–449 (2015)CrossRefGoogle Scholar
  7. 7.
    Jiang, L.N.: Quantum Teleportation Under Different Collective Noise Environment. Int. J. Theor. Phys. 58, 522–530 (2019)CrossRefGoogle Scholar
  8. 8.
    Nielsen, M.A., Chung, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)Google Scholar
  9. 9.
    Hu, X.Y., Gong, Q.H., Guo, G.C.: Phys. Rev. A. 81, 054302 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Hu, M.L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A. 375, 2140–2143 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Fortes, R., Rigolin, G.: Phy. Rev. A. 92, 012338 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Fortes, R., Rigolin, G.: Phy. Rev. A. 93, 062330 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Fortes, R., Rigolin, G.: Phy. Rev. A. 96, 022315 (2017)ADSCrossRefGoogle Scholar
  14. 14.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Albeverio, S., Fei, S.M., Yang, W.L.: Phys. Rev. A. 66, 012301 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Phys. Rev. A. 90, 042332 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  19. 19.
    Oh, S., Lee, S., Lee, H.W.: Phys. Rev. A. 66, 022316 (2002)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of scienceNortheast Electric Power UniversityJilinPeople’s Republic of China

Personalised recommendations