International Journal of Theoretical Physics

, Volume 58, Issue 11, pp 3852–3862 | Cite as

Semi-Quantum Key Agreement and Private Comparison Protocols Using Bell States

  • Lili YanEmail author
  • Shibin Zhang
  • Yan Chang
  • Zhiwei Sheng
  • Yuhua Sun


Semi-quantum protocol uses fewer resources and more flexible, which can still guarantee the unconditional safety. Based on Bell states, this paper first presents a semi-quantum key agreement protocol which allows two classical parties (Alice and Bob) to negotiate a shared secret key with the help of a quantum party (server). Classical parties only can perform reflection operation and measurement the qubit in the classical basis {|0〉, |1〉} in the protocol. During the protocol execution, Alice and Bob equally contribute in determining the final key and no one can manipulate and know the key prior to the other one. The security of the proposed protocol has been discussed, which analysis results show that the proposed protocol not only guarantees the security of the shared secret key but also assures the fairness property. We also analyze the efficiency of the proposed protocol. In addition, a semi-quantum private comparison protocol is proposed based on the key agreement protocol.


Semi-quantum protocol Key agreement Private comparison Bell states 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61572086, 61402058), Major Project of Education Department in Sichuan (Grant No. 18ZA0109) and Planning project of Sichuan Network Culture Research Center (Grant No. WLWH18-22).


  1. 1.
    Bennett, C. H. and Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 175–179 (1984)Google Scholar
  2. 2.
    Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)zbMATHGoogle Scholar
  3. 3.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)ADSGoogle Scholar
  6. 6.
    Salas, P.J.: Security of plug-and-play QKD arrangements with finite resources. Quantum Inf. Comput. 13(9–10), 861–879 (2013)Google Scholar
  7. 7.
    Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using gaussian-modulated coherent states. Nature. 421, 238–241 (2003)ADSGoogle Scholar
  8. 8.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSGoogle Scholar
  9. 9.
    Xu, G., Chen, X.B., Dou, Z., Yang, Y.X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959–2980 (2015)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)Google Scholar
  12. 12.
    Liu, S.L., Zheng, D., Cheng, K.F.: Analysis of information leakage in quantum key agreement. J. Shanghai Jiaotong Univ. (Science). 11, 219–223 (2006)zbMATHGoogle Scholar
  13. 13.
    Tsai, C., Hwang, T.: On Quantum Key Agreement Protocol. Technical Report, C-S-I-E, NCKU, Taiwan, ROC (2009)Google Scholar
  14. 14.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)ADSGoogle Scholar
  15. 15.
    He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15(03), 1750018 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A. 79(3), 032341 (2009)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Wang, J., Zhang, S., Zhang, Q., Tang, C.J.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82(2), 022303 (2010)ADSGoogle Scholar
  22. 22.
    Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A Math. Theor. 46(4), 045304 (2013)ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B. 30(10), 1650130 (2016)ADSMathSciNetGoogle Scholar
  24. 24.
    Yu, K.F., Gu, J., Hwang, T., Gope, P.: Multi-party semi-quantum key distribution-convertible multi-party semi-quantum secret sharing. Quantum Inf. Process. 16(8), 194 (2017)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on bell states. Mod. Phys. Lett. B. 31(13), 1750150 (2017)ADSGoogle Scholar
  26. 26.
    Gao, G., Wang, Y., Wang, D.: Cryptanalysis of a semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B. 32(9), 1850117 (2018)ADSMathSciNetGoogle Scholar
  27. 27.
    Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A. 79(5), 052312 (2009)ADSGoogle Scholar
  28. 28.
    Zhang, X.Z., Gong, W.G., Tan, Y.G., Ren, Z.Z., Guo, X.T.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B. 18(6), 2143 (2009)ADSGoogle Scholar
  29. 29.
    Jian, W., Sheng, Z., Quan, Z., Chao-Jing, T.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)Google Scholar
  30. 30.
    Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSGoogle Scholar
  32. 32.
    Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15(2), 947–958 (2016)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Zhang, M.H., Li, H.F., Xia, Z.Q., Peng, J.Y., Peng, J.Y.: Semiquantum secure direct communication using EPR pairs. Quantum Inf. Process. 16(5), 117 (2017)ADSzbMATHGoogle Scholar
  34. 34.
    Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)ADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56, 3164–3174 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. Lett. 65(3), 032302 (2002)ADSGoogle Scholar
  37. 37.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)ADSGoogle Scholar
  38. 38.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351(1–2), 23–25 (2006)ADSzbMATHGoogle Scholar
  39. 39.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A. 74(5), 054302 (2006)ADSGoogle Scholar
  40. 40.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 72(4), 044302 (2005)ADSGoogle Scholar
  41. 41.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–795 (2002)ADSzbMATHGoogle Scholar
  42. 42.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)ADSGoogle Scholar
  43. 43.
    Damgard, I.B.: A design principle for hash functions. Adv. Cryptol. 89(435), 416–427 (1990)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Thapliyal, K., Sharma, R. D., Pathak, A.,: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. International Journal of Quantum Information, 16(05),1850047 (2018)ADSMathSciNetzbMATHGoogle Scholar
  45. 45.
    Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)ADSGoogle Scholar
  46. 46.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13, 239–247 (2014)ADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    Zhang, B., Liu, X.T., Wang, J., Tang, C.J.: Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 14, 4593–4600 (2015)ADSMathSciNetGoogle Scholar
  49. 49.
    Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE. J. Sel. Top. Quant. 21, 6600111 (2015)Google Scholar
  50. 50.
    Gao, F., Qin, S.J., Huang, W., Wen, Q.Y.: Quantum private query: a new kind of practical quantum cryptographic protocols. Sci. China-Phys. Mech. Astron. 62, 070301 (2019)Google Scholar
  51. 51.
    Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Jakobi, M., Simon, C., Gisin, N., Bancal, J.D., Branciard, C., Walenta, N., Zbinden, H.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A. 83(2), 022301 (2011)Google Scholar
  53. 53.
    Gao, X., Chang, Y., Zhang, S.B., Yang, F., Zhang, Y.: Quantum private query based on Bell state and single photons. Int. J. Theor. Phys. 57, 1983–1989 (2018)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Chang, Y., Xiong, J.X., Gao, X.: Quantum private query protocol based on EPR pairs. Chin. J. Electron. 27(2), 256–262 (2018)Google Scholar
  55. 55.
    Shi, R.H., Mu, Y., Zhong, H., Zhang, S.: Quantum oblivious set-member decision protocol. Phys. Rev. A. 92, 022309 (2015)ADSGoogle Scholar
  56. 56.
    Shi, R.H., Mu, Y., Zhong, H., Zhang, S., Cui, J.: Quantum private set intersection cardinality and its application to anonymous authentication. Inf. Sci. 370-371, 147–158 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of CybersecurityChengdu University of Information TechnologyChengduChina

Personalised recommendations