Advertisement

Semi-Quantum Bi-Signature Scheme Based on W States

  • Xing-Qiang Zhao
  • Hua-Ying Chen
  • Yun-Qian Wang
  • Nan-Run ZhouEmail author
Article

Abstract

A semi-quantum bi-signature scheme based on W states is designed, in which two signers sign the same message. The unconditional security of the new semi-quantum bi-signature scheme is guaranteed with the teleportation of W states and semi-quantum key distribution (SQKD) protocol. From the aspects of hardware requirement and efficiency, the proposed semi-quantum bi-signature scheme is more efficient and convenient than many typical quantum signature schemes.

Keywords

Quantum signature Semi-quantum bi-signature scheme Teleportation W state Semi-quantum key distribution 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61871205 and 61561033), the Major Academic Discipline and Technical Leader of Jiangxi Province (Grant No. 20162BCB22011), and the Innovation Special Foundation of Graduate Student of Jiangxi Province (Grant No. YC2018-B005).

References

  1. 1.
    Zeng, G., Ma, W., Wang, X., Zhu, H.: Signature scheme based on quantum cryptography [J]. Acta Electron. Sin. 29(8), 1098–1100 (2001)Google Scholar
  2. 2.
    Nikolopoulos, G.M.: Continuous-variable quantum authentication of physical unclonable keys: security against an emulation attack [J]. Phys. Rev. A. 97(1), 012324 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    Liu, B., Gao, Z., Xiao, D., Huang, W., Liu, X., Xu, B.: Quantum identity authentication in the orthogonal-state-encoding QKD system [J]. Quantum Inf. Process. 18(5), 137 (2019)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states [J]. Phys. Rev. A. 79(5), 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption [J]. Quantum Inf. Process. 16(3), 70 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., Soukharev, V.: A post-quantum digital signature scheme based on supersingular isogenies [C]. In: International Conference on Financial Cryptography and Data Security, pp. 163–181. Springer, Cham (2017)CrossRefGoogle Scholar
  7. 7.
    Safaei, S., Mazziotti, D.A.: Quantum signature of exciton condensation [J]. Phys. Rev. B. 98(4), 045122 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Gottesman, D., Chuang, I.: Quantum digital signatures [J]. arXiv preprint quant-ph/0105032 (2001)Google Scholar
  9. 9.
    Lamport, L.: Constructing digital signatures from a one-way function [R]. In: Palo Alto: Technical Report CSL-98, SRI International (1979)Google Scholar
  10. 10.
    Zhou, J.X., Zhou, Y.J., Niu, X.X., Yang, Y.X.: Quantum proxy signature scheme with public verifiability [J]. Sci. Chin. Phys. Mechanics and Astronomy. 54(10), 1828–1832 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states [J]. Quantum Inf. Process. 15(6), 2487–2497 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, W., Shi, J., Shi, R., Guo, Y.: Blind quantum signature with controlled four-particle cluster states [J]. Int. J. Theor. Phys. 56(8), 2579–2587 (2017)CrossRefzbMATHGoogle Scholar
  13. 13.
    Y, Y., Shi, R.H., Guo, Y.: Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states [J]. Chin. Phys. B. 27(2), 020302 (2018)CrossRefGoogle Scholar
  14. 14.
    El Bansarkhani, R., Misoczki, R.G.-M.: A hash-based group signature scheme from standard assumptions [C]. In: International Conference on Post-Quantum Cryptography, pp. 441–463. Springer, Cham (2018)CrossRefGoogle Scholar
  15. 15.
    Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes [J]. Phys. Rev. A. 82(4), 042325 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes [J]. Phys. Rev. A. 84(6), 062330 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols [J]. Phys. Rev. A. 84(2), 022344 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Li, Q., Li, C., Wen, Z., Zhao, W., Chan, W.H.: On the security of arbitrated quantum signature schemes [J]. J. Phys. A-Math. Theor. 46(1), 015307 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory [J]. Phys. Rev. Lett. 112(4), 040502 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels [J]. Phys. Rev. A. 93(3), 032325 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, F.L., Liu, W.F., Chen, S.G., Wang, Z.H.: Public-key quantum digital signature scheme with one-time pad private-key [J]. Quantum Inf. Process. 17(1), 10 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Guo, X., Zhang, J.Z., Xie, S.C.: A trusted third-party e-payment protocol based on quantum blind signature without entanglement [J]. Int. J. Theor. Phys. 57(9), 2657–2664 (2018)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zhao, X.Q., Wang, Y.Q., Gong, L.H., Zeng, Q.W.: New bi-signature scheme based on GHZ states and W states [J]. Int. J. Theor. Phys. 58(5), 1555–1567 (2019)CrossRefGoogle Scholar
  24. 24.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob [J]. Phys. Rev. Lett. 99(14), 140501 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “quantum key distribution with classical bob” [J]. Phys. Rev. Lett. 102(9), 098901 (2009)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, C., Yu, K.F., Kao, S., Hwang, T.: Authenticated semi-quantum key distributions without classical channel [J]. Quantum Inf. Process. 15(7), 2881–2893 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Liu, Z.R., Hwang, T.: Mediated semi-quantum key distribution without invoking quantum measurement [J]. Ann. Phys. 530(4), 1700206 (2018)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhu, K.N., Zhou, N.R., Wang, Y.Q., Wen, X.J.: Semi-quantum key distribution protocols with GHZ states [J]. Int. J. Theor. Phys. 57(12), 3621–3631 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue [J]. Quantum Inf. Process. 16(12), 295 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, W.J., Chen, Z.Y., Ji, S., Wang, H.B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation [J]. Int. J. Theor. Phys. 56(10), 3164–3174 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Krawec, W. O: An improved asymptotic key rate bound for a mediated semi-qauntum key distribution protocol [J]. arXiv preprint arXiv:1509.04797 (2015)Google Scholar
  32. 32.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing [C]. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179, Bangalore (1984)Google Scholar
  33. 33.
    Nielsen, M.A.: Conditions for a class of entanglement transformations [J]. Phys. Rev. Lett. 83(2), 436–439 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways [J]. Phys. Rev. A. 62(6), 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states [J]. Phys. Rev. A. 74(6), 062320 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Zhou, Y.S., Wang, F., Luo, M.X.: Efficient superdense coding with W states [J]. Int. J. Theor. Phys. 57(7), 1935–1941 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhou, N.R., Wang, L.J., Gong, L.H., Zuo, X.W., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping [J]. Opt. Commun. 284(19), 4836–4842 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    Cabello, A.: Quantum key distribution in the Holevo limit [J]. Phys. Rev. A. 85(26), 5635 (2000)ADSGoogle Scholar
  39. 39.
    Zhao, X.Q., Zhou, N.R., Chen, H.Y., Gong, L.H.: Multiparty quantum key agreement protocol with entanglement swapping [J]. Int. J. Theor. Phys. 58(2), 436–450 (2019)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xing-Qiang Zhao
    • 1
  • Hua-Ying Chen
    • 2
  • Yun-Qian Wang
    • 1
  • Nan-Run Zhou
    • 3
    Email author
  1. 1.Department of Computer Science and TechnologyNanchang UniversityNanchangChina
  2. 2.Department of PhysicsNanchang UniversityNanchangChina
  3. 3.Department of Electronic Information EngineeringNanchang UniversityNanchangChina

Personalised recommendations