Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 10, pp 3225–3233 | Cite as

A New Multi-Party Quantum Private Comparison Protocol Based on Circle Model

  • Gang Du
  • Fan Zhang
  • Chunguang MaEmail author
Article

Abstract

Recently multi-party quantum private comparison (MQPC) has attracted more and more attentions in the research of quantum cryptography. In our paper, a new MQPC protocol has been proposed by encoding the compared secrets on the phase of n-level single photons. From the proposed protocol, a generic model named circle model can be summarized. With the help of a semi-honest third party (TP), it can be proved that our protocol is immune to the outside attack and dishonest participants’ (including TP) attack.

Keywords

Multi-party quantum private comparison Outside attack Participants attack 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China under Grant No. 61472097,61802118.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 175, 175–179 (1984)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process 12(8), 2655–2669 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56(8), 2433–2444 (2017)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process 13(8), 1677–1685 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wang, T.Y., Cai, X.Q., Ren, Y.L., Zhang, R.L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)CrossRefGoogle Scholar
  9. 9.
    Keet, A., Fortescue, B., Markham, D., et al.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Yang, Y.H., Gao, F., Wu, X., et al.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Wang, T.Y., Liu, Y.C., Wei, C.Y., Cai, X.Q., Ma, J.F.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep. 7, 2485 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process 12(5), 1991–1997 (2013)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 284(6), 1711–1713 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with χ-type entangled states. Phys. Rev. A 78(6), 5175–5179 (2008)CrossRefGoogle Scholar
  15. 15.
    Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 44305 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83(2), 022301 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Wei, C., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Wei, C., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Transactions on Computers (2017)Google Scholar
  20. 20.
    Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58(10), 100301 (2015)CrossRefGoogle Scholar
  21. 21.
    Gao, F., Liu, B., Wen, Q.Y., et al.: Flexible quantum private queries based on quantum key distribution. Opt. Express 20(16), 17411–17420 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Wei, C., Gao, F., Wen, Q.Y., et al.: Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Sci. Rep. 4, 7537 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhang, J.L., Guo, F.Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88(2), 022334 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Shi, R., Mu, Y., Zhong, H., et al.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. Proceedings of the thiry-fourth annual. ACM symposium on Theory of computing, pp. 643–652. ACM (2002)Google Scholar
  26. 26.
    Chen, X.B., Xu, G., Yang, Y.X., et al.: An efficient protocol for the secure multi-party quantum summation. Int. J. Theor. Phys. 49(11), 2793–2804 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1996)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process 12(2), 877–885 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theor. 42(5), 055305 (2009)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Script. 80(6), 065002 (2009)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Yang, Y.G., Xia, J., Jia, X.I.N., et al.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10(06), 1250065 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Liu, B., Gao, F., Jia, H.Y., et al.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Chen, X.B., Su, Y., Niu, X.X., et al.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13(1), 101–112 (2014)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Wen, L., Yong-Bin, W., Wei, C.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57(4), 583 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process 11(2), 373–384 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Lin, J., Yang, C.W., Hwang, T.: Quantum private comparison of equality protocol without a third party. Quantum Inf. Process. 13(2), 239–247 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process 12(2), 1077–1088 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Gao, X., Zhang, S.B., Chang, Y., et al.: Cryptanalysis of the Quantum Private Comparison Protocol Based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State. Int. J. Theor. Phys. 57(6):1716–1722 (2018)Google Scholar
  41. 41.
    Zhou, M.K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 57(1), 42–47 (2018)zbMATHCrossRefGoogle Scholar
  42. 42.
    Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf. Process. 13(11), 2375–2389 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Liu, W., Wang, Y.B., Wang, X.M.: Multi-party Quantum Private Comparison Protocol Using d-Dimensional Basis States Without Entanglement Swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Ye, T.Y.: Multi-party quantum private comparison protocol based on entanglement swapping of Bell entangled states. Commun. Theor. Phys. 66(3), 280 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Liu, W., Wang, Y.B., Wang, X.M.: Multi-party Quantum Private Comparison Protocol Using d -Dimensional Basis States Without Entanglement Swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Gao, F., Qin, S., Wen, Q., et al.: A simple participant attack on the Bradler Dusek protocol. Quantum Inf. Comput. 7(4), 329–334 (2007)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Zhao-Xu, J., Tian-Yu, Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process 16(7), 177 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina
  2. 2.School of Mathematical ScienceHeilongjiang UniversityHarbinChina

Personalised recommendations