Non-abelian Gauge Symmetry for Fields in Phase Space: a Realization of the Seiberg-Witten Non-abelian Gauge Theory

  • J. S. Cruz-Filho
  • R. G. G. Amorim
  • F. C. Khanna
  • A. E. Santana
  • A. F. SantosEmail author
  • S. C. Ulhoa


The Seiberg-Witten formalism has been realized as an electrodynamics in phase space (associated to the Dirac equation written in phase space) and this fact is explored here with non-abelian gauge group. First, a physically heuristic presentation of the Seiberg-Witten approach is carried out for non-abelian gauge in order to guide the calculation procedures. These results are realized by starting with the Lagrangian density for the free Dirac field in phase space. Then a field strength is derived, where the non-abelian gauge group is the SU(2), corresponding to an isospin (non-abelian) field theory in phase space. An application to nucleon is then discussed.


Non-abelian gauge theory Phase space Seiberg-Witten formalism 



This work was partially supported by FAP-DF of Brazil. The work by AES and AFS is supported by CNPq of Brazil.


  1. 1.
    Wigner, E.: Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  2. 2.
    Pauli, W.: Scientific Correspondence. In: Von Meyenn, K. (ed.) , vol. II, p 15. Spring, Berlin (1985)Google Scholar
  3. 3.
    Snyder, H.S.: Phys. Rev. 71, 38 (1947)ADSCrossRefGoogle Scholar
  4. 4.
    Moyal, J.E.: Proc. Camb. Phil. Soc. 45, 99 (1949)ADSCrossRefGoogle Scholar
  5. 5.
    Hillery, M., Connel, R.F.O., Scully, M.O., Wigner, E.P.: Phys. Rep. 106, 121 (1984)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Szabo, R.J.: Phys. Rep. 378, 207 (2003)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Grosse, H., Wilkenhaar, R.: Comumm. Math. Phys. 256, 305 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Seiberg, N., Witten, E.: JHEP, 9909. [hep-th/9908142] (1999)Google Scholar
  9. 9.
    Minwalla, S., Van Raamsdonk, M., Seiberg, N.: J. High Energy Phys. 02, 020 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Langmann, E., Szabo, R.J.: Phys. Lett. B 533, 168 (2002)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Magnen, J., Rivasseau, V., Tanasa, A.: Eur. Phys. Lett. 86, 11001 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Mariz, T., Nascimento, J.R., Rivellis, V.O.: Phys. Rev. D 75, 025020 (2007)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Costa, M.L., Queiroz, A.R., Santana, A.E.: Int. J. Mod. Phys. A 25, 3209 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Gurau, R., Malbouisson, A.P.C., Rivasseau, V., Tanasa, A.: Lett. Math. Phys. 81, 161 (2007)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kalau, W., Walze, M.: J. Geom. Phys. 16, 327 (1955)ADSCrossRefGoogle Scholar
  16. 16.
    Kastler, D.: Commun. Math. Phys. 166, 633 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Girotti, H.O., Gomes, M., Rivelles, V.O., da Silva, A.J.: Nucl. Phys. B 587, 299 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    Belissard, J., van Elst, A., Schulz-Baldes, H.: J. Math. Phys. 35, 53 (1994)CrossRefGoogle Scholar
  19. 19.
    Yu, H., Ma, Bo-Qiang: Mod. Phys. Lett. A 32, 1750030 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Hamil, B.: Mod. Phys. Lett. A 33, 1850017 (2018)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Amorim, R.G.G., Khanna, F.C., Malbouisson, A.P.C., Malbouisson, J.M.C., Santana, A.E.: Int. J. Mod. Phys.A 30, 1550135 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Amorim, R.G.G., Khanna, F.C., Malbouisson, A.P.C., Malbouisson, J.M.C., Santana, A.E.: Int. J. Mod. Phys.A 34, 1950037 (2019)ADSCrossRefGoogle Scholar
  23. 23.
    Oliveira, M.D., Fernandes, M.C.B., Khanna, F.C., Santana, A.E., Ann, J.D.M.: Vianna Phy. 312, 492 (2004)ADSGoogle Scholar
  24. 24.
    Amorim, R.G.G., Fernandes, M. C. b., khanna, F.C., Santana, AE., Vianna, J.D.M.: Phy. Lett. A 361, 464 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Kim, Y.S., Noz, M.E.: Phase Space Picture and Quantum Mechanics - Group Theoretical Approach. W. Scientific, London (1991)CrossRefGoogle Scholar
  26. 26.
    Curtright, T., Fairlie, D., Zachos, C.: Phys. Rev. D 58, 25002 (1998)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Galetti, D., de Toledo Piza, A.F.R.: Physica A 214, 207 (1995)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Lutterbach, L.G., Davidovich, L.: Phys. Rev. Lett. 78, 2547 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    Santana, A.E., Matos Neto, A., Vianna, J.D.M., Khanna, F.C.: Physica A 280, 405 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Amorim, R.G.G., Ulhoa, S.C., Silva, E.O.: Braz. J. Phys. 45, 664 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Amorim, R.G.G., Fernandes, M. C. b., Khanna, F.C., Santana, AE., Vianna, J.D.M.: Int. J. Mod. Phys. A 28, 1350013 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    da Cruz Filho, J.S., Amorim, R.G.G., Ulhoa, S.C., Khanna, F.C., Santana, A.E., Vianna, J.D.M.: Int. J. Mod. Phys. A 31, 1650046 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Amorim, R.G.G., Ulhoa, S.C., Silva, E.O.: Braz. J. Phys. 45, 664 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Blaszak, M., Domanky, Z.: Ann. Phys. 327, 167 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Secretaria de Estado de Educação de Mato GrossoCuiabáBrazil
  2. 2.International Center of Physics, Instituto de FísicaUniversidade de BrasíliaBrasiliaBrazil
  3. 3.Faculdade GamaUniversidade de BrasíliaBrasiliaBrazil
  4. 4.Physics Department, Theoretical Physics InstituteUniversity of AlbertaEdmontonCanada
  5. 5.TRIUMFVancouverCanada
  6. 6.Instituto de FísicaUniversidade Federal de Mato GrossoCuiabáBrazil
  7. 7.Department of Physics and AstronomyUniversity of VictoriaVictoriaCanada

Personalised recommendations