A New Design of 2-Bit Universal Shift Register Using Rotated Majority Gate Based on Quantum-Dot Cellular Automata Technology

  • G. Prakash
  • Mehdi Darbandi
  • N. GafarEmail author
  • Noor H. Jabarullah
  • Mohammad Reza Jalali


Quantum-dot Cellular Automata (QCA) is emerging nanotechnology that can represent binary information using quantum cells without current flows. It is known as a promising alternative of Complementary Metal–Oxide Semiconductor (CMOS) to solve its drawbacks. On the other hand, the shift register is one of the most widely used practical devices in digital systems. Also, QCA has the potential to achieve attractive features than transistor-based technology. However, very small-scale and Nano-fabrication limits impose a hurdle to the design of QCA-based circuits and necessitate for fault-tolerant analysis is appeared. Therefore, the aim of this paper is to design and simulate an optimized a D-flip-flop (as the main element of the shift register) based on QCA technology, which is extended to design an optimized 2-bit universal shift register. This paper evaluates the performance of the designed shift register in the presence of the QCA fault. Collected results using QCADesigner tool demonstrate the fault-tolerant feature of the proposed design with minimum clocking and area consumption.


Fault-tolerant Quantum-dot cellular automata (QCA) Rotated majority gate Universal shift register (USR) 



  1. 1.
    Bhavani, K.S., Alinvinisha, V.: Utilization of QCA based T Flip flop to design Counters. In: International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), vol. 2015, pp. 1–6. IEEE (2015)Google Scholar
  2. 2.
    Devadoss, R., Paul, K., Balakrishnan, M.: Clocking-based coplanar wire crossing scheme for QCA. In: 23rd International Conference on VLSI Design, vol. 2010, pp. 339–344. IEEE (2010)Google Scholar
  3. 3.
    R. Compano, L. Molenkamp, and D. Paul, "Roadmap for nanoelectronics," European Commission IST Programme, Future and Emerging Technologies, 2000Google Scholar
  4. 4.
    Sen, B., Dutta, M., Mukherjee, R., Nath, R.K., Sinha, A.P., Sikdar, B.K.: Towards the design of hybrid QCA tiles targeting high fault tolerance. J. Comput. Electron. 15(2), 429–445 (2016)CrossRefGoogle Scholar
  5. 5.
    Sen, B., Goswami, M., Mazumdar, S., Sikdar, B.K.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)CrossRefGoogle Scholar
  6. 6.
    Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)CrossRefGoogle Scholar
  7. 7.
    Jarollahi, H., Onizawa, N., Gripon, V., Sakimura, N., Sugibayashi, T., Endoh, T., Ohno, H., Hanyu, T., Gross, W.J.: A nonvolatile associative memory-based context-driven search engine using 90 nm CMOS/MTJ-hybrid logic-in-memory architecture. IEEE J. Emerging Sel. Top. Circuits Syst. 4(4), 460–474 (2014)CrossRefGoogle Scholar
  8. 8.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997)CrossRefGoogle Scholar
  9. 9.
    Gadim, M.R., Navimipour, N.J.: Quantum-dot cellular automata in designing the arithmetic and logic unit: systematic literature review, classification and current trends. J. Circuits Syst. Comput. 27(10), 1830005 (2018)CrossRefGoogle Scholar
  10. 10.
    Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)CrossRefzbMATHGoogle Scholar
  11. 11.
    Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nano scale. In: VLSI Test Symposium, 2004. Proceedings. 22nd IEEE, pp. 291–296. IEEE (2004)Google Scholar
  12. 12.
    Kummamuru, R.K., Orlov, A.O., Ramasubramaniam, R., Lent, C.S., Bernstein, G.H., Snider, G.L.: Operation of a quantum-dot cellular automata (QCA) shift register and analysis of errors. IEEE Trans. Electron Devices. 50(9), 1906–1913 (2003)CrossRefGoogle Scholar
  13. 13.
    Sherizadeh, R., Navimipour, N.J.: Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik. 158, 477–489 (2018)CrossRefGoogle Scholar
  14. 14.
    Chabi, A.M., Sayedsalehi, S., Angizi, S., Navi, K.: Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. Int. Sch. Res. Notices. 2014, 1–9 (2014)CrossRefGoogle Scholar
  15. 15.
    Srivastava, S., Bhanja, S.: Hierarchical probabilistic macromodeling for QCA circuits. IEEE Trans. Comput. 56(2), 174–190 (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays. 7(2), 177–189 (2012)Google Scholar
  17. 17.
    Seyedi, S., Navimipour, N.J.: An optimized three-level Design of Decoder Based on nanoscale quantum-dot cellular automata. Int. J. Theor. Phys. 1–12 (2018)Google Scholar
  18. 18.
    S. R. Fam and N. J. Navimipour, "Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata," Photon Netw. Commun. 37(1), 120–130 (2019)Google Scholar
  19. 19.
    Nayeem, N.M., Hossain, M.A., Jamal, L., Babu, H.M.H.: Efficient design of shift registers using reversible logic. In: International Conference on Signal Processing Systems, pp. 474–478. IEEE (2009, 2009)Google Scholar
  20. 20.
    Padmanabhan, A., Miranda, A.V., Srinivas, T.: An efficient design of 4-bit serial input parallel output/serial output shift register in quantum-dot cellular automata. In: Computing for Sustainable Global Development (INDIACom), 2016 3rd International Conference on, pp. 2736–2738. IEEE (2016)Google Scholar
  21. 21.
    Hopfield, J., Onuchic, J.N., Beratan, D.N.: Electronic shift register memory based on molecular electron-transfer reactions. J. Phys. Chem. 93(17), 6350–6357 (1989)CrossRefGoogle Scholar
  22. 22.
    Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23(9), 4155–4168 (2017)CrossRefGoogle Scholar
  23. 23.
    Vankamamidi, V., Lombardi, F.: Design of defect tolerant tile-based QCA circuits. In: Proceedings of the 18th ACM Great Lakes symposium on VLSI, pp. 237–242. ACM (2008)Google Scholar
  24. 24.
    Poorhosseini, M.: Novel defect Terminolgy beside evaluation and design fault tolerant logic gates in quantum-dot cellular automata. J. Adv. Comp. Eng. Technol. 2(1), 17–26 (2016)Google Scholar
  25. 25.
    Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)CrossRefGoogle Scholar
  26. 26.
    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)CrossRefzbMATHGoogle Scholar
  27. 27.
    Sasamal, T.N., Singh, A.K., Ghanekar, U.: An efficient single-layer crossing based 4-bit shift register using QCA. In: Advanced Computing and Communication Technologies, pp. 315–325. Springer (2018)Google Scholar
  28. 28.
    Touil, L., Gassoumi, I., Laajimi, R., Ouni, B.: Efficient design of BinDCT in quantum-dot cellular automata (QCA) technology. IET Image Process. 12(6), 1020–1030 (2018)CrossRefGoogle Scholar
  29. 29.
    Afrooz, S., Navimipour, N.J.: Fault-tolerant Design of a Shift Register at the nanoscale based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(9), 2598–2614 (2018)CrossRefzbMATHGoogle Scholar
  30. 30.
    Momenzadeh, M., Tahoori, M.B., Huang, J., Lombard, F.: Quantum cellular automata: New defects and faults for new devices. In: Parallel and Distributed Processing Symposium, 2004. Proceedings. 18th International, p. 207. IEEE (2004)Google Scholar
  31. 31.
    Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices. 50(9), 1890–1896 (2003)CrossRefGoogle Scholar
  32. 32.
    Walus, K., Schulhof, G., Jullien, G.: High level exploration of quantum-dot cellular automata (QCA). In: Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on, vol. 1, pp. 30–33. IEEE (2004)Google Scholar
  33. 33.
    Ma, X., Huang, J., Metra, C., Lombardi, F.: Reversible gates and testability of one dimensional arrays of molecular QCA. J. Electron. Test. 24(1–3), 297–311 (2008)CrossRefGoogle Scholar
  34. 34.
    Sen, B., Dutta, M., Goswami, M., Sikdar, B.K.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)CrossRefGoogle Scholar
  35. 35.
    Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: QCA circuits for robust coplanar crossing. J. Electron. Test. 23(2–3), 193–210 (2007)CrossRefGoogle Scholar
  36. 36.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)CrossRefGoogle Scholar
  37. 37.
    Huang, J., Momenzadeh, M., Tahoori, M.B., Lombardi, F.: Defect characterization for scaling of QCA devices [quantum dot cellular automata]. In: Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings. 19th IEEE International Symposium on, pp. 30–38. IEEE (2004)Google Scholar
  38. 38.
    Bagal, H.A., Soltanabad, Y.N., Dadjuo, M., Wakil, K., Ghadimi, N.: Risk-assessment of photovoltaic-wind-battery-grid based large industrial consumer using information gap decision theory. Sol. Energy. 169, 343–352 (2018)CrossRefGoogle Scholar
  39. 39.
    Ahadi, A., Ghadimi, N., Mirabbasi, D.: Reliability assessment for components of large scale photovoltaic systems. J. Power Sources. 264, 211–219 (2014)CrossRefGoogle Scholar
  40. 40.
    Singh, G., Sarin, R., Raj, B.: Reliability-Aware Design and Performance Analysis of QCA-Based Exclusive-OR Gate. In: Proceedings of 2nd International Conference on Communication, Computing and Networking, pp. 815–821. Springer (2019)Google Scholar
  41. 41.
    Aghajani, G., Ghadimi, N.: Multi-objective energy management in a micro-grid. Energy Rep. 4, 218–225 (2018)CrossRefGoogle Scholar
  42. 42.
    Nouri, A., Khodaei, H., Darvishan, A., Sharifian, S., Ghadimi, N.: Optimal performance of fuel cell-CHP-battery based micro-grid under real-time energy management: an epsilon constraint method and fuzzy satisfying approach. Energy. 159, 121–133 (2018)CrossRefGoogle Scholar
  43. 43.
    Kandasamy, N., Ahmad, F., Telagam, N.: Shannon logic based novel qca full adder design with energy dissipation analysis. Int. J. Theor. Phys. 57(12), 3702–3715 (2018)CrossRefzbMATHGoogle Scholar
  44. 44.
    Aghazadeh, H., Germi, M.B., Khiav, B.E., Ghadimi, N.: Robust placement and tuning of UPFC via a new multiobjective scheme-based fuzzy theory. Complexity. 21(1), 126–137 (2015)CrossRefGoogle Scholar
  45. 45.
    Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A., Ghadimi, N.: Robust optimization based optimal chiller loading under cooling demand uncertainty. Appl. Therm. Eng. 2018,Google Scholar
  46. 46.
    Abutaleb, M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)CrossRefGoogle Scholar
  47. 47.
    Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Res. Phys. 7, 3543–3551 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ECE, Excel Engineering CollegeNamakkalIndia
  2. 2.Department of Electrical and Electronic EngineeringEastern Mediterranean UniversityGazimagusaTurkey
  3. 3.Department of Information and TechnologyIslamic UniversityKushtiaBangladesh
  4. 4.Universiti Kuala Lumpur Malaysian Institute of Aviation TechnologyKuala LumpurMalaysia
  5. 5.Department of physicsPayame Noor UniversityTehranIran

Personalised recommendations