Two Semi-Quantum Direct Communication Protocols with Mutual Authentication Based on Bell States

  • Zheng Tao
  • Yan Chang
  • Shibin ZhangEmail author
  • Jinqiao Dai
  • Xueyang Li


In this paper, we proposed two semi-quantum direct communication protocols based on Bell states. By pre-sharing two secret keys between two communicants, Alice with the advanced quantum ability can transmit secret messages to the classical Bob who can only perform the limited classical operations. At the same time, both sides of the communication can comfirm the legitimacy of each other’s identity. Security and qubit efficency analysis have been given. The analysis results show that the two protocols can resistant to several well-known attacks and their qubit efficency is higher than some current protocols.


Authentication Semi-quantum direct communication Bell states 



We are very grateful to the reviewers and the editors for their invaluable comments and detailed suggestions that helped to improve the quality of the present paper.

This work is supported by the National Natural Science Foundation of China (Grant Nos.61572086, 61402058), the Application Foundation Project of Sichuan Province of China (Grant No. 2017JY0168), the National Key Research and Development Program (No. 2017YFB0802302) , Sichuan innovation team of quantum security communication (No.17TD0009), Sichuan academic and technical leaders training funding support projects(No. 2016120080102643)the Fund for Middle and Young Academic Leaders of CUIT (Grant No. J201511).


  1. 1.
    Bennett C.H., Brassard, G.: Public key distribution and coin tossing. In: Proceedings of the IEEE international conference on computers, systems and signal processing, Bangalore, pp. 175–179. IEEE, New York (1984)Google Scholar
  2. 2.
    Hillery, M., Buoek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59, 1829 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A. 69, 052307 (2004)CrossRefGoogle Scholar
  4. 4.
    Han, L.F., Liu, Y.M., Shi, S.H., Zhang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A. 361, 24 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Deng, F.G., et al.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A. 372, 1957 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Han, L.F., et al.: Multiparty quantum secret sharing of secure direct communication using single photons. Opt. Commun. 281, 2690 (2008)CrossRefGoogle Scholar
  7. 7.
    Li, X.H., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B. 39, 1975 (2006)CrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A. 75, 052306 (2007)CrossRefGoogle Scholar
  10. 10.
    Han, L.F., et al.: Communications in Theoretical Physics Revisiting Probabilistic Teleportation Scheme for atomic state via cavity QED. Commun. Theor. Phys. 46, 217 (2006)CrossRefGoogle Scholar
  11. 11.
    Deng, F.G., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A. 72, 022338 (2005)CrossRefGoogle Scholar
  12. 12.
    Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A. 65, 042316 (2002)CrossRefGoogle Scholar
  13. 13.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002)CrossRefGoogle Scholar
  14. 14.
    Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)CrossRefGoogle Scholar
  15. 15.
    Long, G.L., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front Phys. China. 2, 251 (2002)CrossRefGoogle Scholar
  16. 16.
    Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923 (2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chang, Y., et al.: Quantum broadcast communication and authentication protocol with a quantum one-time pad. Chin. Phys. B. 23, 010305 (2014)CrossRefGoogle Scholar
  18. 18.
    Li, X.H., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16, 2149 (2007)CrossRefGoogle Scholar
  19. 19.
    Gu, B., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54, 942 (2011)CrossRefGoogle Scholar
  20. 20.
    Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71, 044305 (2005)CrossRefGoogle Scholar
  21. 21.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical bob. Phys. Rev. Lett. 99(14), 140501 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Boyer, M., Gelles, R., Kenigsberg, D., et al.: Semiquantum key distribution. Phys. Rev. A. 79, 032341 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A. 82(2), 022303 (2010)CrossRefGoogle Scholar
  24. 24.
    Li, L.Z., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical bobs. J. Phys. A Math. Theor. 46, 045304 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lin, J., Yang, C.W., Tsai, C.W., Hwang, T.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52, 156–162 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zou, X.F., Qiu, D.W.: Three-Step semiquantum secure direct communication protocol. Science China Physics, Mechanics Astronomy (2014)Google Scholar
  27. 27.
    Yang, C.W., Hwang, T., Lin, T.H.: Modification attack on QSDC with authentication and the improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yu, K.F., Yang, C.W., Liao, C.H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using bell states. Quantum Inf. Process. 15, 947–958 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Meslouhi, A., Hassouni, Y.: Cryptanalysis on authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 16(18), (2017)Google Scholar
  31. 31.
    Li, Y.-B., Qin, S.-J., Yuan, Z., Huang, W., Sun, Y.: Quantum private comparison against decoherence noise. Quantum Inf. Process. 12(6), 2191–2205 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li, Y.-B., Wang, T.-Y., Chen, H.-Y., Li, M.-D., Yang, Y.-T.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theor. Phys. 52(8), 2818–2825 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Li, Y.-B., Wen, Q.-Y., Qin, S.-J., Guo, F.-Z., Sun, Y.: Practical quantum all-or-nothing oblivious transfer protocol. Quantum Inf. Process. 13(1), 131–139 (2014)CrossRefGoogle Scholar
  34. 34.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A. 351, 23 (2006)CrossRefzbMATHGoogle Scholar
  35. 35.
    Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Erratum: improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A. 73, 049901 (2006)CrossRefGoogle Scholar
  36. 36.
    Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical bob. Quantum Inf. Process. 14, 681 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)CrossRefGoogle Scholar
  38. 38.
    Shukla, C., Thapliyal, K., Pathak, A., et al.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 295 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of CybersecurityChengdu University of Information TechnologyChengduChina

Personalised recommendations