Advertisement

Limited Resource Semi-Quantum Secret Sharing Based on Multi-Level Systems

  • Yi Xiang
  • Jun Liu
  • Ming-qiang Bai
  • Xue Yang
  • Zhi-wen MoEmail author
Article

Abstract

In the actual quantum task, it is more realistic to achieve the same task with quantum resources as few as possible which is known as semi-quantum idea. This paper proposed a novel and resultful semi-quantum secret sharing protocol, which is implemented using product states based on multi-level systems. In this scheme, the quantum capabilities of the receivers Bob and Charlie are limited, and the sender Alice does not have to access quantum memory. In addition, the security of the protocol is analyzed in detail from two aspects of Intercept-measure-resend and Entangle-measuring attacks initiated by internal malicious participants. More importantly, among the premise of proximate security of Ref. Li et al. (Quantum Inf. Process. 17, 285, 2018), our scheme reduces the number of particles used for eavesdropping detection and increases the amount of information carried by each particle.

Keywords

Quantum cryptography Semi-quantum secret sharing Product states Measurement Multi-level systems 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No.11671284), Sichuan Provincial Natural Science Foundation of China (Grant No.2017JY0197) and the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant No.2018QYJ02).

References

  1. 1.
    Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)CrossRefGoogle Scholar
  4. 4.
    Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)CrossRefGoogle Scholar
  5. 5.
    Bagherinezhad, S., Karimipour, V.: Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers. Phys. Rev. A 67, 044302 (2003)CrossRefGoogle Scholar
  6. 6.
    Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chi, D.P., Choi, J.W., Kim, J.S., et al.: Three-party d-level quantum secret sharing protocol. J. Phys. A: Math. Theor. 41, 255309 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372, 1957 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sun, Y., Wen, Q.Y., Gao, F., et al.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)CrossRefGoogle Scholar
  10. 10.
    Shi, R.H., Huang, L.S., Yang, W., et al.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283, 2476–2480 (2010)CrossRefGoogle Scholar
  11. 11.
    Keet, A., Fortescue, B., Markham, D., et al.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 062315 (2010)CrossRefGoogle Scholar
  12. 12.
    Long, Y.X., Qiu, D.W., Long, D.Y.: Quantum secret sharing of multi-bits by an entangled six-qubit state. J. Phys. A: Math. Theor. 45, 195303 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, H., Huang, Y., Fang, X., et al.: High-capacity three-party quantum secret sharing with single photons in both the polarization and the spatial-mode degrees of freedom. Int. J. Theor. Phys. 52, 1043–1051 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bell, B.A., Markham, D., Herrera-Martí, D.A., et al.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5, 5480 (2014)CrossRefGoogle Scholar
  15. 15.
    Qin, H., Dai, Y.: Proactive quantum secret sharing. Quantum Inf. Process. 14, 4237–4244 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bai, C.M., Li, Z.H., Xu, T.T., et al.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55, 4972–4986 (2016)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)CrossRefGoogle Scholar
  18. 18.
    Boyer, M., Kenigsberg, D., Mor, T.: Quantum Key Distribution with Classical Bob. Phys. Rev. Lett. 99, 140501 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)CrossRefGoogle Scholar
  20. 20.
    Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10, 1250050 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lin, J., Yang, C.W., Tsai, C.W., et al.: Intercept-resend attacks on semi-quantum secret sharing and the improvements. Int. J. Theor. Phys. 52, 156–162 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Li, L., Qiu, D.W., Mateus, P.: Quantum secret sharing with classical Bobs. J. Phys. A: Math. Theor. 46, 045304 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Gheorghiu, V.: Generalized semiquantum secret-sharing schemes. Phys. Rev. A 85, 052309 (2012)CrossRefGoogle Scholar
  24. 24.
    Xie, C., Li, L., Qiu, D.: A novel semi-quantum secret sharing scheme of specific bits. Int. J. Theor. Phys. 54, 3819–3824 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yin, A., Wang, Z., Fu, F.: A novel semi-quantum secret sharing scheme based on Bell states. Mod. Phys. Lett. B 31, 1750150 (2017)CrossRefGoogle Scholar
  26. 26.
    Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing protocol. Int. J. Theor. Phys. 56, 1–9 (2017)CrossRefzbMATHGoogle Scholar
  27. 27.
    Li, Z., Li, Q., Liu, C., et al.: Limited resource semiquantum secret sharing. Quantum Inf. Process. 17, 285 (2018)CrossRefzbMATHGoogle Scholar
  28. 28.
    Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)CrossRefGoogle Scholar
  30. 30.
    Kaszlikowski, D., Oi, D.K.L., Christandl, M., et al.: Quantum cryptography based on qutrit Bell inequalities. Phys. Rev. A 67, 012310 (2003)CrossRefGoogle Scholar
  31. 31.
    Durt, T., Cerf, N.J., Gisin, N., et al.: Security of quantum key distribution with entangled qutrits. Phys. Rev. A 67, 012311 (2003)CrossRefGoogle Scholar
  32. 32.
    Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)CrossRefGoogle Scholar
  33. 33.
    Liu, X.S., Long, G.L., Tong, D.M., et al.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)CrossRefGoogle Scholar
  34. 34.
    Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Takesue, H., Inoue, K.: Quantum secret sharing based on modulated high-dimensional time-bin entanglement. Phys. Rev. A 74, 012315 (2006)CrossRefGoogle Scholar
  36. 36.
    Tavakoli, A., Herbauts, I., Zukowski, M., et al.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302 (2015)CrossRefGoogle Scholar
  37. 37.
    Xiang, Y., Mo, Z.W.: Quantum secret sharing protocol based on four-dimensional three-particle entangled states. Mod. Phys. Lett. B 30, 1550267 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Qin, H., Dai, Y.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional Bell state. Inf. Process. Lett. 116, 351–355 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Bai, C.M., Li, Z.H., Xu, T.T., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16, 59 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bennett, C.H., Brassard, G., Crépeau, C., et al.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Deutsch, D., Ekert, A., Jozsa, R., et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yi Xiang
    • 1
    • 2
    • 4
  • Jun Liu
    • 3
    • 4
  • Ming-qiang Bai
    • 1
    • 4
  • Xue Yang
    • 1
    • 4
  • Zhi-wen Mo
    • 1
    • 4
    Email author
  1. 1.School of Mathematical SciencesSichuan Normal UniversityChengduChina
  2. 2.College of Mathematics and StatisticsSichuan University of Science and EngineeringZigongChina
  3. 3.School of Mathematics and InformationChina West Normal UniversityNanchongChina
  4. 4.Institute of Intelligent Information and Quantum InformationSichuan Normal UniversityChengduChina

Personalised recommendations