Advertisement

Search for Lepton Flavor Non-universality with B→ (K, K*) τ+τ- Decays

  • P. MajiEmail author
  • S. Biswas
  • P. Nayek
  • S. SahooEmail author
Article

Abstract

The decay modes of B meson consisting tau leptons as final state particle are seemed to be the key feature for searching new physics. As the experimental measurements for b → +τ processes are still not confirmed, the theoretical study of these decays is playing vital role in recent times. The lepton flavor universality violation gains much curiosity after the observation of RK and \( {R}_{K^{\ast }} \) anomalies in semileptonic \( B\to \left(K,{K}^{\ast}\right)\mu \overline{\mu} \) channel which provides a hint towards μ − e non-universality in flavor sector. In this paper, we have devoted our concern to the decay mode B → (K, K)τ+τ to predict the branching ratio. We have also searched for the τ − l (where l = e, μ) lepton flavor non-universality for neutral current transitions. We have estimated our results in the standard model as well as in Z′ model.

Keywords

B meson decays Lepton flavor non-universality Standard model Z′ model 

Notes

Acknowledgments

P. Maji acknowledges the DST, Govt. of India for providing INSPIRE Fellowship through IF160115 for her research work. P. Nayek and S. Sahoo would like to thank SERB, DST, Govt. of India for financial support through grant no. EMR/2015/000817. S. Sahoo also acknowledges the financial support of NIT Durgapur through “Research Initiation Grant” office order No. NITD/Regis/OR/25 dated 31st March, 2014 and NITD/Regis/OR/2014 dated 12th August, 2014. S. Biswas also acknowledges NIT Durgapur for providing fellowship for her research.

References

  1. 1.
    Melikhov, D., Nikitin, N., Simula, S.: Lepton asymmetries in exclusive b → sl+l decays as a test of the standard model. Phys. Lett. B. 430, 332 (1998) arXiv: hep-ph/9803343CrossRefGoogle Scholar
  2. 2.
    Aaij, R., (LHCb Collaboration), et al.: Measurement of form-factor-independent observables in the B0→K*0 μ+μ- decay. Phys. Rev. Lett. 111, 191801 (2013) arXiv: 1308.1707CrossRefGoogle Scholar
  3. 3.
    Aaij, R., (LHCb Collaboration), et al.: Test of Lepton Universality using B+ → K+l+ldecays. Phys. Rev. Lett. 113, 151601 (2014) arXiv: 1406.6482CrossRefGoogle Scholar
  4. 4.
    Aaij, R., (LHCb Collaboration), et al.: Test of lepton universality with B0 → K∗0l+ldecays. J. High Energ. Phys. 08, 055, (2017) arXiv: 1705.05802CrossRefGoogle Scholar
  5. 5.
    Alok, A.K., et al.: New physics solutions for RD and RD. J. High Energy Phys. 09, 152 (2018) arXiv: 1710.04127CrossRefGoogle Scholar
  6. 6.
    Bobeth, C., Haisch, U.: New physics in \( {\Gamma}_{12}^{\mathrm{s}}:\left(\overline{\mathrm{s}}\mathrm{b}\right)\left(\overline{\uptau}\uptau \right) \) operators. Acta Phys. Polon. B. 44, 127 (2013) arXiv: 1109.1826CrossRefGoogle Scholar
  7. 7.
    Capdevila, B., et al.: Searching for new physics with b → sτ+τ processes. Phys. Rev. Lett. 120, 181802 (2018)CrossRefGoogle Scholar
  8. 8.
    Bobeth, C., Haisch, U., Lenz, A., Pecjak, B., Tetlalmatzi-Xolocotzi, G.: On new physics in ΔΓd. J. High Energy Phys. 06, 040 (2014) arXiv: 1404.2531Google Scholar
  9. 9.
    Alonso, R., Grinstein, B., Camalich, J.M.: Lepton universality violation and lepton flavor conservation in B-meson decays. J. High Energ. Phys. 10, 184 (2015) arXiv: 1505.05164CrossRefGoogle Scholar
  10. 10.
    Crivellin, A., Mueller, D., Ota, T.: Simultaneous explanation of R(D(∗)) and b → sμ+μ: the last scalar leptoquarks standing. J. High Energy Phys. 09, 040 (2017) arXiv: 1703.09226CrossRefGoogle Scholar
  11. 11.
    Calibbi, L., Crivellin, A., Li, T.: A model of vector leptoquarks in view of the B-physics anomalies. Phys. Rev. D. 98(115), 002 (2018) arXiv: 1709.00692Google Scholar
  12. 12.
    Aaij, R., (LHCb Collaboration), et al.: Search for the decays \( {B}_s^o\to {\tau}^{+}{\tau}^{-} \) and B 0 → τ + τ . Phys. Rev. Lett. 118, 251802 (2017) arXiv: 1703.02508CrossRefGoogle Scholar
  13. 13.
    Lees, J.P., (BaBar collaboration), et al.: Search for B+ → K+τ+τ at the BaBar experiment. Phys. Rev. Lett. 118, 031802 (2017) arXiv: 1605.09637CrossRefGoogle Scholar
  14. 14.
    Bobeth, C., et al.: Bs,d→1+1- in the standard model with reduced theoretical uncertainty. Phys. Rev. Lett. 112, 101801 (2014) arXiv: 1311.0903CrossRefGoogle Scholar
  15. 15.
    Bobeth, C.: Updated \( {\mathrm{B}}_{\mathrm{q}}\to \overline{\ell}\ell \) in the standard model at higher orders. arXiv: 1405.4907, 2014Google Scholar
  16. 16.
    Kamenik, J.F., Monteil, S., Semkiv, A., Silva, L.V.: Lepton polarization asymmetries in rare semi-tauonic b→s exclusive decays at FCC-ee. Eur. Phys. J. C. 77, 701 (2017) arXiv: 1705.11106CrossRefGoogle Scholar
  17. 17.
    Hewett, J.L.: Tau polarization asymmetry in B → X s τ + τ . Phys. Rev. D. 53, 4964 (1996) arXiv: hep-ph/9506289CrossRefGoogle Scholar
  18. 18.
    Bouchard, C., et al.: Standard Model predictions for B → Kll with form factors from lattice QCD. Phys. Rev. Lett. 111, 162002 (2013) Erratum: Phys. Rev. Lett. 112, 149902 (2014)], arXiv: 1306.0434CrossRefGoogle Scholar
  19. 19.
    Guetta, D., Nardi, E.: Searching for new physics in rare B → τ decays. Phys. Rev. D. 58, 012001 (1998) arXiv: hep-ph/9707371CrossRefGoogle Scholar
  20. 20.
    Grinstein, B., Savage, M.J., Wise, M.B.: B → Xse+e in the six-quark model. Nucl. Phys. B. 319, 271 (1989)CrossRefGoogle Scholar
  21. 21.
    Buchalla, G., Buras, A.J., Lautenbacher, M.E.: Weak decays beyond leading logarithms. Rev. Mod. Phys. 68, 1125 (1996) arXiv: hep-ph/9512380CrossRefGoogle Scholar
  22. 22.
    Buras, A.J., Munz, M.: Effective Hamiltonian for B → Xse+e beyond leading logarithms in the naïve dimensional regularization and ’t Hooft-Veltman schemes. Phys. Rev. D. 52, 186 (1995)CrossRefGoogle Scholar
  23. 23.
    Alok, A.K., et al.: New-physics contributions to the forward-backward asymmetry in B → K μ + μ . J. High Energy Phys. 02, 053 (2010) arXiv: 0912.1382CrossRefGoogle Scholar
  24. 24.
    Ali, A., Ball, P., Handoko, L.T., Hiller, G.: Comparative study of the decays B → (K, K)l+lin the standard model and supersymmetric theories. Phys. Rev. D. 61, 074024 (2000)CrossRefGoogle Scholar
  25. 25.
    Shirkhanghah, N.: Exclusive B → Kl+l decay with polarized K and fourth generation effect. Act. Phys. Pol. B. 42, 1219 (2011)CrossRefGoogle Scholar
  26. 26.
    Buchalla, G., Buras, A.J.: QCD corrections to rare K- and B- decays for arbitrary top quark mass. Nucl. Phys. B. 400, 225 (1993)CrossRefGoogle Scholar
  27. 27.
    Godfrey, S., Isgur, N.: Mesons in a relativized quark model with chromodynamics. Phys. Rev. D. 32, 189 (1985)CrossRefGoogle Scholar
  28. 28.
    Melikhov, D., Nikitin, N., Simula, S.: Rare exclusive semileptonic b → s transitions in the standard model. Phys. Rev. D. 57, 6814 (1998)CrossRefGoogle Scholar
  29. 29.
    Leike, A.: The phenomenology of extra neutral gauge bosons. Phys. Rep. 317, 143 (1999)CrossRefGoogle Scholar
  30. 30.
    Langacker, P., Plumacher, M.: Flavor changing effects in theories with a heavy Z′ boson with family nonuniversal couplings. Phys. Rev. D. 62, 013006 (2000)CrossRefGoogle Scholar
  31. 31.
    Sahoo, S., Maharana, L.: Z -mediated flavour – changing neutral currents and their contributions to \( {B}_q^o-\overline{B_q^o} \) mixing. Phys. Rev. D. 69, 115012 (2004)CrossRefGoogle Scholar
  32. 32.
    Langacker, P.: The physics of heavy Z gauge bosons. Rev. Mod. Phys. 81, 1199 (2009)CrossRefGoogle Scholar
  33. 33.
    Chang, Q., Lic, X.Q., Yang, Y.D.: Family non-universal Z′ effects on \( {\overline{\mathrm{B}}}_{\mathrm{q}}-{\mathrm{B}}_{\mathrm{q}} \) mixing, B → Xsμ+μand Bs → μ+μdecays. J. High Energy Phys. 02, 082 (2010)CrossRefGoogle Scholar
  34. 34.
    Barger, V., Chiang, C.W., Langacker, P., Lee, H.S.: Solution to the B → πK puzzle in a flavor-changing Z′ model. Phys. Lett. B. 598, 218 (2004)CrossRefGoogle Scholar
  35. 35.
    Beaudry, N., et al.: The B → πK puzzle revisited. J. High Energy Phys. 074(2018), (1801) arXiv: 1709.07142Google Scholar
  36. 36.
    Sahoo, S., Das, C., Maharana, L.: Effect of Z′-mediated flavor-changing neutral current on Bππ decays. Phys. Atom. Nucl. 74, 1032 (2011)CrossRefGoogle Scholar
  37. 37.
    Li, Y., Wang, W., Du, D., Li, Z., Xu, H.: Impact of Family non-universal Z′ boson on pure annihilation Bs → π+π and Bd → K+K decays. Eur. Phys. J. C. 75, 328 (2015) arXiv: 1503.00114CrossRefGoogle Scholar
  38. 38.
    Barger, V., et al.: Family nonuniversal U(1)′ gauge symmetries and b → s transitions. Phys. Rev. D. 80, 055008 (2009)CrossRefGoogle Scholar
  39. 39.
    Chang, Q., Li, X.-Q., Yang, Y.-D.: Constraints on the non-universal Z′ couplings from B → πK, πK and ρK decays. J. High Energy Phys. 05, 056 (2009)CrossRefGoogle Scholar
  40. 40.
    Bona, M.: (UTfit collaborations), et al.: First evidence of new physics in b ↔ s transitions. PMC Phys. A. 3, 6 (2009)CrossRefGoogle Scholar
  41. 41.
    Ahmed, I., Rehman, A.: LHCb anomaly in B → Kμ+μ optimised observables and potential of Z′ model. Chin. Phys. C. 42, 063103 (2018) arXiv: 1703.09627CrossRefGoogle Scholar
  42. 42.
    Altmannshofer, W., Straub, D.M.: New physics in B → Kμμ? Eur. Phys. J. C. 73, 2646 (2013) arXiv: 1308.1501CrossRefGoogle Scholar
  43. 43.
    Cornell, A.S., Gaur, N.: Lepton polarization asymmetries for B → Kl+l: a model independent approach. J. High Energ. Phys. 02, 005 (2005) arXiv: hep-ph/0408164CrossRefGoogle Scholar
  44. 44.
    Gaur, N.: Lepton polarization asymmetries in B → Xsτ+τ in MSSM. arXiv: hep-ph/0305242, 2003Google Scholar
  45. 45.
    Bečirević, D., Fajfer, S., Košnik, N.: Lepton flavor non-universality in b → s + processes. Phys. Rev. D. 92, 014016 (2015) arXiv: 1503.09024CrossRefGoogle Scholar
  46. 46.
    Rai Choudhury, S., Gaur, N., Cornell, A.S., Joshi, G.C.: Lepton polarization correlations in B→K*τ-τ+. Phys. Rev. D. 68, 054016 (2003) arXiv: hep-ph/0304084CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of Technology DurgapurDurgapurIndia

Personalised recommendations