Properties of Entanglement between the JC Model and Atom-Cavity-Optomechanical System

  • Qinghong LiaoEmail author
  • Lu Yuan
  • Yanchao Fu
  • Nanrun Zhou


We investigate the dynamics of remote entanglement in the system consisting of a Jaynes-Cummings model and an atom-cavity-optomechanical system. Meanwhile, we find that the remote entanglement is related to the initial entanglement degree between two atoms, the coupling strength between atom and cavity. Moreover, the phenomenon of entanglement sudden death appears in the evolution of entanglement for some initial conditions. By investigating the entanglement transfer among two atoms and cavity 1, we show that the entanglement transfer can be realized at some special time. In particular, we evaluate the tripartite entanglement of the two atoms and cavity 1 through π-tangle, and prepare the larger tripartite entanglement. This implementation of tripartite entanglement might provide a potential way to realize improved information processing and distributed quantum computing.


Entanglement π-tangle Jaynes-cummings model Atom-cavity- optomechanical system 



This project was supported by National Natural Science Foundation of China (Grant No. 61368002), the Foundation for Distinguished Young Scientists of Jiangxi Province (Grant No. 20162BCB23009), the Natural Science Foundation of Jiangxi Province (Grant No. 20161BAB202046), the Research Foundation of the Education Department of Jiangxi Province (Grant No. GJJ13051), the Open Project Program of CAS Key Laboratory of Quantum Information (Grant No. KQI201704), and Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201711).


  1. 1.
    Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Jakubczyk, P., Majchrowski, K., Tralle, I.: Quantum entanglement in double quantum systems and Jaynes-cummings model. Nanoscale Res. Lett. 12(236), 236 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    González, E.A.R., Borne, A., Boulanger, B., Levenson, J.A., Bencheikh, K.: Continuous-variable triple-photon states quantum entanglement. Phys. Rev. Lett. 120, 043601 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    Walter, S., Budich, J.C., Eisert, J., Trauzettel, B.: Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling. Phys. Rev. B. 88, 035441 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Ludwig, M., Hammerer, K., Marquardt, F.: Entanglement of mechanical oscillators coupled to a nonequilibrium environment. Phys. Rev. A. 82, 012333 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Joshi, C., Larson, J., Jonson, M., Andersson, E., Öhberg, P.: Entanglement of distant optomechanical systems. Phys. Rev. A. 85, 033805 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Chidress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature. 466, 730–734 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Børkje, K., Nunnenkamp, A., Girvin, S.M.: Proposal for entangling remote micromechanical oscillators via optical measurements. Phys. Rev. Lett. 107, 123601 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Ting, Y., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404, (2004)Google Scholar
  10. 10.
    Ficek, Z., Tanaś, R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A. 74, 343 (2006)Google Scholar
  11. 11.
    Yönaç, M., Yu, T., Eberly, J.H.: Sudden death of entanglement of two Jaynes-cummings atoms. J. Phys. B Atomic Mol. Phys. 39, 621 (2006)Google Scholar
  12. 12.
    Chathavalappil, N., Satyanarayana, S.V.M.: Schemes to avoid entanglement sudden death of decohering two qubit system. Eur. Phys. J. D. 73, 36 (2019)Google Scholar
  13. 13.
    Qiang, W.C., Zhang, L., Zhang, H.P.: Geometric quantum discord of a Jaynes–cummings atom and an isolated atom. J. Phys. B Atomic Mol. Phys. 48, 245503 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Li, Z.J., Li, J.Q., Jin, Y.H., Nie, Y.H.: Time evolution and transfer of entanglement between an isolated atom and a Jaynes–cummings atom. J. Phys. B Atomic Mol. Phys. 40, 3401–3411 (2007)CrossRefGoogle Scholar
  15. 15.
    Qiang, W.C., Sun, G.H., Dong, Q., Camacho-Nieto, O., Dong, S.H.: Concurrence of three Jaynes–cummings systems. Quantum Inf. Process. 17, 90 (2018)Google Scholar
  16. 16.
    Fasihi, M.A., Mojaveri, B.: Entanglement protection in Jaynes–cummings model. Quantum Inf. Process. 18, 75 (2019)Google Scholar
  17. 17.
    Li, Y.L., Huang, J., Xiao, X.: Environment-induced entanglement for a tripartite system in non-markovian dissipation. Int. J. Theor. Phys. 52, 3797–3807 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, H.P., Qiang, W.C.: π-Tangle of a Jaynes-cummings system and an isolated atom. Int. J. Theor. Phys. 57, 1141–1147 (2018)CrossRefzbMATHGoogle Scholar
  19. 19.
    Ou, Y.C., Fan, H.: Monogamy inequality in terms of negativity for three-qubit states. Phys. Rev. A. 75, 062308 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Eichenfield, M., Michael, C.P., Perahia, R., Painter, O.: Actuation of micro-optomechanical systems via cavity-enhanced optical dipole forces. Nat. Photonics. 1, 416–422 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Chen, B., Jiang, C., Zhu, K.D.: Slow light in a cavity optomechanical system with a Bose-Einstein condensate. Phys. Rev. A. 83, 055803 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Pontin, A., Bonaldi, M., Borrielli, A., Marconi, L., Marino, F., Pandraud, G., Prodi, G.A., Sarro, P.M., Serra, E., Marin, F.: Dynamical two-mode squeezing of thermal fluctuations in a cavity optomechanical system. Phys. Rev. Lett. 116, 103601 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Liu, D.S., Wang, P.T., Jin, M., Yin, M.: Entangling cavity modes in a double-cavity Optomechanical system. Int. J. Theor. Phys. 57, 3381–3388 (2018)CrossRefGoogle Scholar
  24. 24.
    Farace, A., Ciccarello, F., Fazio, R., Giovannetti, V.: Steady-state entanglement activation in optomechanical cavities. Phys. Rev. A. 89, 022335 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Wieczorek, W., Hofer, S.G., Hoelscher-Obermaier, J., Riedinger, R., Hammerer, K., Aspelmeyer, M.: Optimal state estimation for cavity optomechanical systems. Phys. Rev. Lett. 114, 223601 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Bai, C.H., Wang, D.Y., Zhang, S., Wang, H.F.: Qubit-assisted squeezing of mirror motion in a dissipative cavity optomechanical system[J]. Sci. China Phys. Mech. 62, 970311 (2019)CrossRefGoogle Scholar
  27. 27.
    Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature. 460, 724–727 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Hofer, S.G., Hammerer, K.: Entanglement-enhanced time-continuous quantum control in optomechanics. Phys. Rev. A. 91, 033822 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Liao, J.Q., Wu, Q.Q., Nori, F.: Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Phys. Rev. A. 89, 219 (2014)Google Scholar
  30. 30.
    Pandit, M., Das, S., Roy, S.S., Dhar, H.S., Sen, U.: Effects of cavity–cavity interaction on the entanglement dynamics of a generalized double Jaynes–cummings model. J. Phys. B Atomic Mol. Phys. 51, 045501 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    Liu, N., Li, J.Q., Liang, J.Q.: Entanglement in a tripartite cavity-opotomechanical system. Int. J. Theor. Phys. 52, 706–715 (2013)CrossRefzbMATHGoogle Scholar
  32. 32.
    Liao, Q.H., Ye, Y., Jin, P., Zhou, N.R., Nie, W.J.: Tripartite entanglement in an atom-cavity-optomechanical system. Int. J. Theor. Phys. 57, 1319–1337 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    Osnaghi, S., Bertet, P., Auffeves, A., Maioli, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent control of an atomic collision in a cavity. Phys. Rev. Lett. 87, 037902 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Qinghong Liao
    • 1
    • 2
    Email author
  • Lu Yuan
    • 1
  • Yanchao Fu
    • 1
  • Nanrun Zhou
    • 1
  1. 1.Department of Electronic Information EngineeringNanchang UniversityNanchangChina
  2. 2.State Key Laboratory of Low-Dimensional Quantum Physics, Department of PhysicsTsinghua UniversityBeijingChina

Personalised recommendations