Advertisement

Mutual Derivation Between Arbitrary Distribution Forms of Momenta and Momentum Components

  • Pei-Pin Yang
  • Qi Wang
  • Fu-Hu LiuEmail author
Article

Abstract

The mutual derivation between arbitrary distribution forms of momenta and momentum components of particles produced in an isotropic emission source are systematically studied in terms of probability theory and mathematical statistics. The distributions of rapidities and pseudorapidities are expediently studied. As an example, the classical and relativistic ideal gas models are used to show these distributions by the analytic and Monte Carlo methods. As an application, the experimental rapidity and transverse momentum spectra of light flavor particles produced in high energy collisions are analyzed by a multi-component relativistic ideal gas model in which the single model can be replaced by other models and distributions.

Keywords

Distribution of momenta Distribution of momentum components Mutual derivation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11575103 and 11847311, the Shanxi Provincial Natural Science Foundation under Grant No. 201701D121005, and the Fund for Shanxi “1331 Project” Key Subjects Construction.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

  1. 1.
    Abelev, B., et al.: (ALICE Collaboration): Production of Σ(1385)± and Ξ(1530)0 in proton-proton collisions at \( \sqrt{s}= \)7 TeV. Eur. Phys. J. C75, 1 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    Aamodt, K., et al.: (ALICE Collaboration): Transverse momentum spectra of charged particles in proton-proton collisions at \( \sqrt{s}= \)900 GeV with the ALICE at the LHC. Phys. Lett. B693, 53–68 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Falco, A. D. for the ALICE Collaboration: Vector meson production in pp collisions at \( \sqrt{s}= \)7 TeV, measured with the ALICE detector. J. Phys. G38, 124083 (2011)ADSGoogle Scholar
  4. 4.
    Lakomov, I.: For the ALICE Collaboration: Event activity dependence of inclusive J/ψ production in p-Pb collisions at \( \sqrt{s_{NN}}= \)5.02 TeV with ALICE at the LHC. Nucl. Phys. A931, 1179–1183 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Aduszkiewicz, A., et al.: (NA61/SHINE Collaboration): Measurements of total production cross sections for π + + C, π + + Al, K + + C, and K + + Al at 60 GeV/c and π + + C and π + + Al at 31 GeV/c. Phys. Rev. D98, 052001 (2018)Google Scholar
  6. 6.
    Andronov, E. (for the NA61/SHINE Collaboration): Transverse momentum and multiplicity fluctuations in Ar+Sc collisions at the CERN SPS from NA61/SHINE. Acta Phys. Pol. B: Proc. Suppl. 10, 449–453 (2017)Google Scholar
  7. 7.
    Adam, J., et al.: (STAR collaboration): Beam energy dependence of rapidity-even dipolar flow in Au+Au collisions. Phys. Lett. B784, 26–32 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    Yang, S.: For the STAR Collaboration: e + e pair production at very low transverse momentum in Au+Au collisions at \( \sqrt{s_{NN}}= \) 200 GeV and U+U collisions at \( \sqrt{s_{NN}}= \)193 GeV at STAR. Int. J. Mod. Phys.: Conf. Series. 46, 1860013 (2018)Google Scholar
  9. 9.
    Adamczyk, L., et al.: (STAR Collaboration): Azimuthal anisotropy in Cu+Au collisions at \( \sqrt{s_{NN}}= \) 200 GeV. Phys. Rev. C98, 014915 (2018)ADSGoogle Scholar
  10. 10.
    Adamczyk, L., et al.: (STAR collaboration): Beam energy dependence of jet-quenching effects in Au+Au collisions at \( \sqrt{s_{NN}}= \) 7.7, 11.5, 14.5, 19.6, 27, 39, and 62.4 GeV. Phys. Rev. Lett. 121, 032301 (2018)ADSCrossRefGoogle Scholar
  11. 11.
    Alt, C., et al.: (NA49 Collaboration): Energy dependence of ϕ meson production in central Pb+Pb collisions at \( \sqrt{s_{NN}}=6 \) to 17 GeV. Phys. Rev. C78, 044907 (2008)ADSGoogle Scholar
  12. 12.
    Floris, M. for the ALICE Collaboration: Identified particles in pp and Pb-Pb collisions at LHC energies with the ALICE detector. J. Phys. G38, 124025 (2011)ADSGoogle Scholar
  13. 13.
    Zhou, G.R.: Probability and Mathematical Statistics. Higher Education Press, Beijing, China (1984)Google Scholar
  14. 14.
    Qin, Y.H.: Thermal Physics. Higher Education Press, Beijing, China (2011)Google Scholar
  15. 15.
    Synge, J.L.: The Relativistic Gas. North-Holland, Amsterdam, The Netherlands (1957)Google Scholar
  16. 16.
    Dermer, C.D.: The production spectrum of a relativistic Maxwell-Boltzmann gas. Astrophys. J. 280, 328–333 (1984)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Landau, L.D.: Izvestiya Akademii Nauk SSSR: series Fizicheskikh 17 51 (1953). In: Ter-Haarp, D. (ed.) English-Translation: Collected Papers of L. D. Landau, p. 569. Oxford, Pergamon, UK (1965) and Reprinted in: Quark-Gluon Plasma: Theoretical Foundations: An Annotated Reprint Collection (Eds. J. Kapusta, B. Müller, J. Rafelski), p. 283, Elsevier, Amsterdam, The Netherland (2003)Google Scholar
  18. 18.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods: Second Edition. Springer, Germany and World Scientific, Singapore (2009)Google Scholar
  19. 19.
    Liu, F.H.: Particle production in Au-Au collisions at RHIC energies. Phys. Lett. B583, 68–72 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Liu, F.H., Chen, Y.H., Li, B.C.: Transverse momentum distribution of particles in high energy collisions and relativistic temperature transformation. Indian J. Phys. 87, 1149–1151 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Planck, M., Zur Dynamik bewegter Systeme. In Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften, pp. 542-570, Leipzig, Germany (1907)Google Scholar
  22. 22.
    Einstein, A.: Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität und Elektronik. 4, 411–462 (esp. 458-462) (1907)Google Scholar
  23. 23.
    Pauli, W.: Theory of Relativity. Dover Publications, USA (1981)zbMATHGoogle Scholar
  24. 24.
    Pauli, W.: Relativitätstheorie. Springer, Germany (2000)CrossRefzbMATHGoogle Scholar
  25. 25.
    Farías, C., Pinto, V.A., Moya, P.S.: What is the temperature of a moving body? Sci. Rep. 7, 17657 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Abgrall, N., et al.: (NA61/SHINE collaboration): Measurement of negatively charged pion spectra in inelastic p+p interactions at plab=20, 31, 40, 80 and 158 GeV/c. Eur. Phys. J. C74, 2794 (2017)Google Scholar
  27. 27.
    Kittel, W., De Wolf, E.A.: Soft Multihadron Dynamics, p. 652. World Scientific, Singapore (2005)CrossRefGoogle Scholar
  28. 28.
    Sarkisyan, E. K. G., Sakharov, A. S.: On similarities of bulk observables in nuclear and particle collisions. CERN-PH-TH-2004-213 (2004), arXiv:hep-ph/0410324 (2004)Google Scholar
  29. 29.
    Sarkisyan, E.K.G., Sakharov, A.S.: Multihadron production features in different reactions. AIP Conf. Proc. 828, 35–41 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Sarkisyan, E.K.G., Sakharov, A.S.: Relating multihadron production in hadronic and nuclear collisions. Eur. Phys. J. C70, 533–541 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Nouicer, R.: Similarity of initial states in A+A and p+p collisions in constituent quarks framework. AIP Conf. Proc. 828, 11–16 (2006)Google Scholar
  32. 32.
    Nouicer, R., PHOBOS Collaboration: Systematic of global observables in Cu+Cu and Au+Au collisions at RHIC energies. AIP Conf. Proc. 842, 86–88 (2006)Google Scholar
  33. 33.
    Nouicer, R.: Charged particles multiplicities in A+A and p+p collisions in the constituent quarks framework. Eur. Phys. J. C49, 281–286 (2007)Google Scholar
  34. 34.
    Grosse-Oetringhaus, J.F., Reygers, K.: Charged-particle multiplicity in proton-proton collisions. J. Phys. G37, 083001 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Sarkisyan, E.K.G., Mishra, A.N., Sahoo, R., Sakharov, A.S.: Multihadron production dynamics exploring the energy balance in hadronic and nuclear collisions. Phys. Rev. D93, 054046 (2016)ADSGoogle Scholar
  36. 36.
    Sarkisyan, E.K.G., Mishra, A.N., Sahoo, R., Sakharov, A.S.: Centrality dependence of midrapidity density from GeV to TeV heavy-ion collisions in the effective-energy universality picture of hadroproduction. Phys. Rev. D94, 011501(R) (2016)ADSGoogle Scholar
  37. 37.
    Mishra, A.N., Ortiz, A., Paić, G.: Intriguing similarities of high-p T particle production between pp and A-A collisions. Phys. Rev. C99, 034911 (2019)ADSGoogle Scholar
  38. 38.
    Liu, F.H., Tian, C.X., Duan, M.Y., Li, B.C.: Relativistic and quantum revisions of the multisource thermal model in high-energy collisions. Adv. High Energy Phys. 2012, 287521 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Theoretical Physics & State Key Laboratory of Quantum Optics and Quantum Optics DevicesShanxi UniversityTaiyuanChina

Personalised recommendations