Advertisement

A Quantum Proxy Signature Scheme by Using Random Sequence to Blind the Message

  • Xiao Zhang
  • Jian-Zhong ZhangEmail author
  • Shu-Cui Xie
Article

Abstract

A quantum proxy signature scheme by using random sequence to blind the message is proposed. Our scheme introduces the trusted party Trent and enhances the eavesdropping check to ensure higher security. It only uses the Von Neumann measurement, which reduces measurement times and improves efficiency. Meanwhile, our scheme uses random sequence to enhance message’s blindness. We use the physical characteristics of quantum mechanics to guarantee scheme’s blindness, unconditional security, unforgeability, undeniability.

Keywords

Quantum signature Proxy blind signature Five-qubit entangled state Controlled quantum teleportation 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61402275, 61402015, 61273311), the Natural Science Foundation of Shaanxi Province (Grant Nos. 2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities(Grant No. GK201402004).

References

  1. 1.
    Wang, T.Y., Wei, Z.L.: Analysis of forgery attack on one-time proxy signature and the improvement. Int. J. Theor. Phys. 55(2), 743–745 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Zou, X., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 42325–0 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum muti-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Thero. Phys. 55(2), 809–816 (2015)CrossRefzbMATHGoogle Scholar
  4. 4.
    Guo, W., Zhang, J.Z., Li, Y.P.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3Rd ACM Conference on Computer and Communications Security, pp. 48–57. New Delhi (1996)Google Scholar
  6. 6.
    Barnum, H., Crepeau, C., Gottesman, D., et al.: In: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science, pp 449–458 (2002)Google Scholar
  7. 7.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quant. Inf. Process. 11(2), 455–463 (2012)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Xu, G.B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54(8), 2605–2612 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cao, H.J., Wang, H.S., Li, P.F.: Quantum proxy multi-signature scheme using genuinely entangled six-qubit state. Int. J. Theor. Phys. 52(4), 1188–1193 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cao, H.J., Huang, J., Yu, Y.F., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53(9), 3095–3100 (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, X., Zhang, J.Z., Xie, S.C.: An improved proxy blind signature scheme. Int. J. Theor. Phys. 58(2), 354–363 (2019)CrossRefGoogle Scholar
  12. 12.
    Chaum, D.: Blind Signature for Untraceable Payments. Advances in Cryptology, pp. 199–203. Springer, New York (1982)Google Scholar
  13. 13.
    Wen, X.J., Niu, X.M., Ji, L.P.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Info. Process 13(8), 1677–1685 (2014)Google Scholar
  15. 15.
    Zhang, J.Z., Yang, Y.Y., Xie, S.C.: An improved quantum proxy blind signature scheme based on genuine seven-qubit entangled state. Int. J. Theor. Phys. 56(7), 2293–2302 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, J.L., Zhang, J.Z., Xie, S.C.: Improvement of a quantum proxy blind signature scheme. Int. J. Theor. Phys. 57(6), 1612–1621 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guo, W., Zhang, J.Z., Xie, S.C.: A novel quantum proxy blind signature scheme. Int. J. Theor. Phys. 56(5), 1708–1718 (2017)CrossRefzbMATHGoogle Scholar
  18. 18.
    Niu, X.F., Zhang, J.Z., Xie, S.C.: A quantum multi-proxy blind signature scheme based on entangled four-qubit cluster state. Int. J. Theor. Phys. 70(1), 43–48 (2018)ADSGoogle Scholar
  19. 19.
    Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58, 1036–1045 (2019)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jiang, D.H., Wang, X.J., Xu, G.B., et al.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8, 447–462 (2018)CrossRefGoogle Scholar
  22. 22.
    Wang, T.Y., Cai, X.Q., Ren, Y.L., et al.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)CrossRefGoogle Scholar
  23. 23.
    Zeng, C., Zhang, J.Z., Xie, S.C.: A quantum proxy blind signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 56(6), 1762–1770 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Cao, H.J., Zhang, Y.Y., Li, P.E.: A quantum proxy weak blind signature scheme. Int. J. Thero. Phys. 53(2), 419–425 (2014)CrossRefzbMATHGoogle Scholar
  28. 28.
    Cao, H.J., Yu, Y.F., Qin, S.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Thero. Phys. 54(4), 1325–1333 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Cao, H.J., Zhang, J.F., Liu, J., et al.: A new quantum proxy multi-signature scheme using maximally entangled seven-qubit states. Int. J. Theor. Phys. 55(2), 774–780 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations