Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 2016–2026 | Cite as

A Proxy Blind Signature Scheme of Quantum Information Transmission in Two-Particle State

  • Kalibinuer Tiliwalidi
  • Jian-Zhong ZhangEmail author
  • Shu-Cui Xie
Article

Abstract

A new proxy blind signature scheme based on controlled quantum teleportation is presented in this paper. We present a scheme for teleporting an unknown two-particle entangled state with message from a sender (Alice) to a receiver (David) via a genuine six-qubit entangled state. In this scheme, we introduce a trusted third party to enhance security and effectively resist forgery attacks. One-way hash faction, Von-Neumann measurement and unitary operation are adapted in this scheme. Our scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. Moreover, quantum key distribution (QKD) protocol and one-time pad are adapted in this scheme.

Keywords

Controlled quantum teleportation Quantum proxy blind signature Six-qubit entangled state Von-Neumann measurement 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61402275, 61402015, 61273311, 61802243), the Natural Science Foundation of Shaanxi Province (Grant No. 2015JM6263, 2016JM6069), and the Fundamental Research Funds for the Central Universities(Grant No. GK201402004).

References

  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. J. Phys. Rev. A 58(6), 99–99 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Deng, F.G., Li, C.Y., Li, Y.S., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. J. Phys. Rev. A 72(2), 656–665 (2005)CrossRefGoogle Scholar
  4. 4.
    Nie, Y.Y., Liu, J.C., Sang, M.H.: Perfect teleportation of an arbitrary three-qubit state by using w-class states. Int. J. Theor. Phys. 50(10), 3225–3229 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with w-states. Phys. Rev. A 74(6), 154–154 (2006)CrossRefGoogle Scholar
  6. 6.
    Nie, Y.Y., Li, Y.H., Liu, J.C., et al.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nie, Y.Y., Hong, Z.H., Huang, Y.B., et al.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48(5), 1485–1490 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang, B., Liu, Y.: Economic and deterministic quantum teleportation of arbitrary bipartite pure and mixed state with shared cluster entanglement. Int. J. Theor. Phys. 48(9), 2644–2651 (2009)CrossRefzbMATHGoogle Scholar
  9. 9.
    William, S.: Cryptography and Network Security: Principles and Practice, 2nd edn. Prentice Hall, New York (1998)Google Scholar
  10. 10.
    Fan, C., Lei, C.: Efficient blind signature scheme based on quadratic residues. Electron. Lett. 32(9), 811–813 (1996)CrossRefGoogle Scholar
  11. 11.
    Fan, L.: A novel quantum blind signature scheme with four-particle cluster states. Int. J. Theor. Phys. 55(3), 1558–1567 (2016)ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Guo, W., Zhang, J.Z., Li, Y.P., et al.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Niu, X.F., Zhang, J.Z., Xie, S.C.: A quantum multi-proxy blind signature scheme based on entangled four-qubit cluster state. Commun. Theor. Phys. 70(1), 43–48 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with chi-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)CrossRefzbMATHGoogle Scholar
  16. 16.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guo, X., Zhang, J.Z., Xie, S.C.: A trusted third-party e-payment protocol based on quantum blind signature without entanglement. Int. J. Theor. Phys. 57(9), 2657–2664 (2018)CrossRefGoogle Scholar
  18. 18.
    Borrans, A., Plastino, A.R., Batle, J., et al.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A, Math. Theor. 40(44), 13407–13421 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Borras, A., Majtey, A.P., Casas, M., et al.: Robustness of highly entangled multi-qubit states under decoherence. Phys. Rev. A 79(2), 022108 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Theor. Phys. 42(11), 5303 (2009)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the International Conference on Computers. IEEE, pp. 175–179 (1984)Google Scholar
  22. 22.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Mayers, D.: Unconditional security in quantum cryptography. J. Assoc: Comput. Math. 48(3), 351–406 (2001)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D. 41(3), 599–627 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Wang, T.Y., Cai, X.Q., Zhang, J.Z.: Off-line e-cash system with multiple banks based on elliptic curve. Comput. Eng. Appl. 33(15), 155–157 (2007)Google Scholar
  26. 26.
    Cao, F., Cao, Z.F.: A secure identity-based proxy multi-signature scheme:. Inf. Sci. 179(3), 292–302 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Cao, H.J., Wang, H.S., Li, P.F.: Quantum proxy multi-signature scheme using genuinely entangled six-qubits state. Int. J. Theor. Phys. 52(4), 1188–1193 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Cao, H.J., Yu, Y.F., Song, Q., et al.: A quantum proxy weak blind signature scheme based on controlled quantum teleportation. Int. J. Theor. Phys. 54 (4), 1325–1333 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Zeng, C., Zhang, J.Z., Xie, S.C.: A quantum proxy blind signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 56(6), 1762–1770 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Yang, Y.Y., Xie, S.C., Zhang, J.Z.: An improved quantum proxy blind signature scheme based on genuine seven-qubit entangled state. Int. J. Theor. Phys. 56(7), 2293–2302 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhang, J.L., Zhang, J.Z., Xie, S.C.: Improvement of a quantum proxy blind signature scheme. Int. J. Theor. Phys. 57(6), 1612C1621 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kalibinuer Tiliwalidi
    • 1
  • Jian-Zhong Zhang
    • 1
    Email author
  • Shu-Cui Xie
    • 2
  1. 1.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations