Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1957–1967 | Cite as

Circular Controlled Quantum Teleportation by a Genuine Seven-qubit Entangled State

  • ZhongLiang Shao
  • Yinxiang LongEmail author
Article

Abstract

A scheme of circular controlled quantum teleportation, which is a novel version of bidirectional controlled quantum teleportation, is proposed using a specific genuine seven-qubit entangled state as quantum channel, and then it is generalized to the scene with a general genuine seven-qubit entangled state as channel. This means that with the control of the supervisor Daniel while Alice teleportates an unknown qubit state to Bob, Bob can also teleportate an unknown qubit state to Charlie and Charlie can also teleportate an unknown qubit state to Alice circularly, simultaneously. Compared with the BCQT schemes proposed before, the intrinsic efficiency of our scheme is optimal.

Keywords

Circular quantum teleportation Controlled quantum teleportation Genuine seven-qubit entanglement state Bidirectional quantum teleportation Genuine multi-parties entanglement 

Notes

Acknowledgements

This work is supported by Natural Science Foundation of Guangdong Province of China(No.2016a030313736).

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Rigolin, G.: Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement. Phys. Rev. A 72(3), 309–315 (2005)Google Scholar
  4. 4.
    Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62(2), 022307 (2000)ADSMathSciNetGoogle Scholar
  5. 5.
    Shi, B.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Rev. A 296(4), 161–164 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Tian, D., Tao, Y., Qin, M.: Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci. China Ser. G: Phys. Mech. Astron. 51(10), 1523–1528 (2008)ADSGoogle Scholar
  7. 7.
    Wu, Huai-Zhi, Yang, et al.: Quantum teleportation and superdense coding via w-class states. Commun. Theor. Phys. 49(4), 901–904 (2008)Google Scholar
  8. 8.
    Long, Y.X., Qiu, D.W., Long, D.Y.: Perfect teleportation of unknown qudit by a d-level GHZ channel. Int. J. Quantum Inf. 7(04), 755–770 (2009)Google Scholar
  9. 9.
    Kang, S.Y., Chen, X.B., Yang, Y.X.: Quantum teleportation and state sharing via a generalized seven-qubit brown state. Int. J. Theor. Phys. 52(10), 3413–3431 (2013)zbMATHGoogle Scholar
  10. 10.
    Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53(4), 1322–1324 (2014)zbMATHGoogle Scholar
  11. 11.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58(6), 4394 (1998)ADSMathSciNetGoogle Scholar
  12. 12.
    Yang, C.P., Han, S.: A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network. Phys. Lett. A 343(4), 267–273 (2005)ADSzbMATHGoogle Scholar
  13. 13.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)ADSGoogle Scholar
  14. 14.
    Wang, Y.H., Song, H.S.: Preparation of partially entangled W state and deterministic multi-controlled teleportation. Opt. Commun. 281(3), 489–493 (2008)ADSGoogle Scholar
  15. 15.
    Wang, X.W., Su, Y.H., Yang, G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum. Inf. Process. 8(4), 319–330 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Tian-Yin, W., Qiao-Yan, W.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)Google Scholar
  17. 17.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 497–500 (2007)Google Scholar
  18. 18.
    Song-Song, Yi-You, Hong, et al.: Controlled teleportation using four-particle cluster state. Commun. Theor. Phys. 50(9), 633–636 (2008)Google Scholar
  19. 19.
    Liu, J.C., Li, Y.H., Nie, Y.Y.: Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state. Int. J. Theor. Phys. 49(8), 1976–1984 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Long, Y.X., Qiu, D.W., Long, D.Y.: Perfect teleportation between arbitrary split of six partites by a maximally genuinely entangled six-qubit state. Int. J. Quantum Inf. 8(05), 821–841 (2010)Google Scholar
  21. 21.
    Jiang, Y.T., Mo, Z.W.: Comparison and analysis of the control power between two different perfect controlled teleportation schemes using four-particle cluster state. Int. J. Theor. Phys. 56(10), 3084–3091 (2017)zbMATHGoogle Scholar
  22. 22.
    Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 156–156 (2008)Google Scholar
  23. 23.
    Deng, F., Li, X.: Controlled teleportation. Front. Comput. Sci. China 2(2), 147–160 (2008)Google Scholar
  24. 24.
    Man, Z.X., Xia, Y.J., An, N.B.: Genuine multiqubit entanglement and controlled teleportation. Phys. Rev. A 75(5), 497–500 (2007)Google Scholar
  25. 25.
    Fang, S.H., Jiang, M.: Bidirectional and asymmetric controlled quantum information transmission via five-qubit brown state. Int. J. Theor. Phys. 56(5), 1530–1536 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Zhao, N., Li, M., Chen, N., et al.: Quantum teleportation of eight-qubit state via six-qubit cluster state. Int. J. Theor. Phys. 57(2), 516–522 (2018)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhao, N., Li, M., Chen, N., et al.: An efficient quantum teleportation of six-qubit state via an eight-qubit cluster state. Can. J. Phys. 96(6), 650–653 (2018)ADSGoogle Scholar
  28. 28.
    Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)MathSciNetGoogle Scholar
  29. 29.
    Li, Y.H., Li, X.L., Sang, M.H., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52(11), 3870–3873 (2013)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sun, X., Zha, X.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state. Acta. Photonica. Sin. 48, 1052–1056 (2013)Google Scholar
  32. 32.
    Thapliyal, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)zbMATHGoogle Scholar
  34. 34.
    Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55(6), 3008–3016 (2016)zbMATHGoogle Scholar
  35. 35.
    Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 384–387 (2016)zbMATHGoogle Scholar
  36. 36.
    Sang, M.H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 380–383 (2016)zbMATHGoogle Scholar
  37. 37.
    Wu, H., Zha, X.W., Yang, Y.Q.: Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state. Int. J. Theor. Phys. 57(1), 28–35 (2018)zbMATHGoogle Scholar
  38. 38.
    Fang, S.H., Jiang, M.: A novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. Int. J. Theor. Phys. 57(13), 1–10 (2018)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Duan, Y.J., Zha, X.W., Sun, X.M., et al.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53(8), 2697–2707 (2014)zbMATHGoogle Scholar
  40. 40.
    Zha, X.W., Song, H.Y., Qi, J.X., Wang, D., Lan, Q.: A maximally entangled seven-qubit state. J. Phys.A. Math. Theor. 45, 255302 (2012)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Fu, H.Z., Tian, X.L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theor. Phys. 53(6), 1840–1847 (2014)zbMATHGoogle Scholar
  42. 42.
    Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)Google Scholar
  43. 43.
    Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys., 1–12 (2017)Google Scholar
  44. 44.
    Li, M., Zhao, N., Chen, N., et al.: Quantum teleportation of five-qubit state. Int. J. Theor. Phys. 56(9), 2710–2715 (2017)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Yuan, H., Liu, Y.M., Zhang, W., et al.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41(14), 145506 (2008)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Automation EngineeringGuangdong Technical College of Water Resources and Electric EngineeringGuangzhouChina

Personalised recommendations