Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1937–1956 | Cite as

Entropy Influenced RNA Diffused Quantum Chaos to Conserve Medical Data Privacy

  • R. Santhiya Devi
  • K. Thenmozhi
  • John Bosco Balaguru Rayappan
  • Rengarajan Amirtharajan
  • Padmapriya PraveenkumarEmail author
Article

Abstract

Recently, the protection and transferring of medical images among peers in the established communication link has become a significant security threat. In this paper, to curtail the threats posed on the open communal channel, RNA diffused Quantum Chaos (RQC) encryption algorithm for colour Digital Imaging and Communications in Medicines (DICOM) image is proposed for the first time. It employs entropy estimation and updates it in the key stream generation and thereby avoids the limitation in traditional encryption schemes of scrambling the position of the pixels before diffusion. The proposed encryption scheme uses Novel Enhanced Quantum Representation (NEQR) and qubit arrangement to store the grayscale value of every pixel in the DICOM image. Using the key generated from the chaotic map, the image is diffusedusing the quantum Controlled-NOT(CNOT)gate. Further, to enrich the diffusion process, Deoxyribonucleic Acid (DNA) transcript Ribo Nucleic Acid (RNA) is used to diffuse the quantum bits in the image matrix with its self-complementary sequence generation. The diffused image is permuted by incorporating the circular shift operation. The efficiency of the proposed algorithm has been validated by using encryption quality metrics.

Keywords

Quantum encryption RNA NEQR RQC DICOM 

Notes

Acknowledgements

The authors wish to acknowledge SASTRA Deemed to be University, Thanjavur, India for extending infrastructural support to carry out this work.

References

  1. 1.
    Diaconu, A.-V.: Circular inter–intra pixels bit-level permutation and chaos-based image encryption. Inf. Sci. (NY). 355–356, 314–327 (2016).  https://doi.org/10.1016/J.INS.2015.10.027 CrossRefGoogle Scholar
  2. 2.
    Hua, Z., Yi, S., Zhou, Y.: Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 144, 134–144 (2018).  https://doi.org/10.1016/j.sigpro.2017.10.004 CrossRefGoogle Scholar
  3. 3.
    Praveenkumar, P., Kerthana Devi, N., Ravichandran, D., Avila, J., Thenmozhi, K., Rayappan, J.B.B., Amirtharajan, R.: Transreceiving of encrypted medical image – a cognitive approach. Multimed. Tools Appl. 77, 1–26 (2017).  https://doi.org/10.1007/s11042-017-4741-7 Google Scholar
  4. 4.
    Feynman, R.P.: Simulating physics with computers by R P Feynman.Pdf. Int. J. Theor. Phys. 21, 467–488 (1982)CrossRefGoogle Scholar
  5. 5.
    Sun B, Le PQ, Iliyasu AM, Yan F, Garcia JA, Dong F, Hirota K (2011) A Multi-Channel Representation for Images on Quantum Computers Using the RGB D Color Space. 1Google Scholar
  6. 6.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9, 1–11 (2010).  https://doi.org/10.1007/s11128-009-0123-z MathSciNetCrossRefGoogle Scholar
  7. 7.
    Latorre JI (2005) Image compression and entanglement. 4Google Scholar
  8. 8.
    Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013).  https://doi.org/10.1007/s11128-013-0567-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zhou R-G, Wu Q, Zhang M-Q, Shen C-Y (2012) A quantum image encryption algorithm based on quantum image geometric transformations. Pattern Recognit. Chinese Conf. CCPR 2012, 321, 480–487.  https://doi.org/10.1007/978-3-642-33506-8
  10. 10.
    Song, X.H., Wang, S., Liu, S., Abd El-Latif, A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013).  https://doi.org/10.1007/s11128-013-0629-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Yang, Y.-G., Jia, X., Sun, S.-J., Pan, Q.-X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. (NY). 277, 445–457 (2014).  https://doi.org/10.1016/j.ins.2014.02.124 CrossRefGoogle Scholar
  12. 12.
    Beheri MH, Amin M, Song X, El-Latif AAA (2016) Quantum Image Encryption Based on Scrambling- Diffusion ( SD ) Approach. Front. Signal Process 43–47Google Scholar
  13. 13.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011).  https://doi.org/10.1007/s11128-010-0177-y MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Zhou, R.G., Sun, Y.J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14, 1717–1734 (2015).  https://doi.org/10.1007/s11128-015-0964-6 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yan, F., Chen, K., Venegas-Andraca, S.E., Zhao, J.: Quantum image rotation by an arbitrary angle. Quantum Inf. Process. 16, 1–20 (2017).  https://doi.org/10.1007/s11128-017-1733-5 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wu Y, Member S, Noonan JP, Member L (2011) NPCR and UACI randomness tests for image encryption. Cyber Journals Multidiscip. Journals Sci. Technol. J. Sel. Areas Telecommun. 31–38Google Scholar
  17. 17.
    Abd El-Latif, A.A., Abd-El-Atty, B., Talha, M.: Robust encryption of quantum medical images. IEEE Access. 6, 1073–1081 (2018).  https://doi.org/10.1109/ACCESS.2017.2777869 CrossRefGoogle Scholar
  18. 18.
    Li, H.-S., Li, C., Chen, X., Xia, H.: Quantum image encryption algorithm based on NASS. Int. J. Theor. Phys. 57, 3745–3760 (2018).  https://doi.org/10.1007/s10773-018-3887-z MathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3D Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17(338), (2018).  https://doi.org/10.1007/s11128-018-2104-6
  20. 20.
    Wang J, Geng Y-C, Han L, Liu J-Q (2018) Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 1–15.  https://doi.org/10.1007/s10773-018-3932-y
  21. 21.
    Zhou, N., Hu, Y., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16, 1–23 (2017).  https://doi.org/10.1007/s11128-017-1612-0 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process. 14, 1193–1213 (2015).  https://doi.org/10.1007/s11128-015-0926-z ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, X.-Z., Chen, W.-W., Wang, Y.-Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57, 2904–2919 (2018).  https://doi.org/10.1007/s10773-018-3810-7 CrossRefGoogle Scholar
  24. 24.
    Wang, X., Liu, C.: A novel and effective image encryption algorithm based on chaos and DNA encoding. Multimed. Tools Appl. 76, 6229–6245 (2017).  https://doi.org/10.1007/s11042-016-3311-8 CrossRefGoogle Scholar
  25. 25.
    Ye, G., Pan, C., Huang, X., Zhao, Z., He, J.: A chaotic image encryption algorithm based on information entropy. Int. J. Bifurc. Chaos. 28, 1850010 (2018).  https://doi.org/10.1142/S0218127418500104 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Higgs, P.G.: RNA secondary structure: physical and computational aspects. Q. Rev. Biophys. 33, 199–253 (2000)CrossRefGoogle Scholar
  27. 27.
    Shabash, B., Wiese, K.C.: RNA visualization: relevance and the current state-of-the-art focusing on pseudoknots. IEEE/ACM Trans. Comput. Biol. Bioinform. 14, 696–712 (2017).  https://doi.org/10.1109/TCBB.2016.2522421 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics & Communication Engineering, School of Electrical & Electronics EngineeringSASTRA Deemed UniversityThanjavurIndia

Personalised recommendations