International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1927–1936 | Cite as

A Controller-Independent Quantum Dialogue Protocol with Four-Particle States

  • Long Zhang
  • Shu Dong
  • Ke-Jia ZhangEmail author
  • Hong-Wei Sun


Controller-independent quantum dialogue (CIQD) is a significant topic in the research of quantum secure direct communication (QSDC). In this paper, we propose a new CIQD protocol with a special kind of four-particle entangled states. From our security analysis, it can be seen that the information leakage which is a serious problem in many CIQD protocols will be prevented in our protocol. Moreover, the presented protocol can resist many existing attacks, including intercept-and-resend attack, entangle-and-measure attack, fake entangled particles attack.


Quantum cryptography Quantum dialogue Bidirectional quantum secure communication 



This work is supported by National Natural Science Foundation of China under Grant No.61802118, Natural Science Foundation of Heilongjiang Province under Grant No.A2016007, Open Foundation of State key Laboratory of Networking and Switching Technology (BUPT) under Grant No.SKLNST-2018-1-07, University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province supported under Grant No.UNPYSCT-2018015 and Hei Long Jiang Postdoctoral Foundation under Grant No.LBH-Z17048.


  1. 1.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28, 656–715 (1949)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bennett, C.H.: Quantum cryptgraphy public key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and, Signal Processing, pp. 175–179. Bangalore (1984)Google Scholar
  3. 3.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret? Phys. Rev. Lett. 83(3), 648–651 (1999)ADSGoogle Scholar
  4. 4.
    Hillery, M., Buzĕk, V., Berthiaume, A.: Quantum secret sharing. quant-ph/9806063, 59(3), 1829–1834 (1998)Google Scholar
  5. 5.
    Wang, T.Y., Liu, Y.Z., Wei, C.Y., et al.: Security of a kind of quantum secret sharing with entangled states. Sci. Rep., 7(1) (2017)Google Scholar
  6. 6.
    Wang, T.-Y., Li, Y.-P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process 12(5), 1991–1997 (2013)ADSMathSciNetGoogle Scholar
  7. 7.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process 12(8), 2655–2669 (2013)ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Zhang, K.J., Jia, H.Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54(2), 582–588 (2015)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process 16(3), 1–15 (2017)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56(5), 1–12 (2017)ADSzbMATHGoogle Scholar
  11. 11.
    Wang, T.Y., Wei, Z.L.: Analysis of forgery attack on one-time proxy signature and the improvement. Int. J. Theor. Phys. 55(2), 743–745 (2016)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Wang, T.Y., Cai, X.Q., Zhang, R.L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process 13(8), 1677–1685 (2014)ADSMathSciNetzbMATHGoogle Scholar
  13. 13.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Process 11(2), 455–463 (2012)ADSMathSciNetGoogle Scholar
  14. 14.
    Wang, T.Y., Cai, X.Q., Ren, Y.L., et al.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)Google Scholar
  15. 15.
    Wang, Q., Yu, C., Gao, F., et al: Self-tallying quantum anonymous voting. Phys. Rev. A 94(2), 022333 (2016)ADSGoogle Scholar
  16. 16.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93(4), 042318 (2016)ADSGoogle Scholar
  17. 17.
    Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Transactions on Computers (2017)Google Scholar
  18. 18.
    Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Selected Topics Quant. Electron. 21(3), 98–108 (2015)ADSGoogle Scholar
  19. 19.
    Wang, T.Y., Wang, S.Y., Ma, J.F.: Robust quantum private queries. Int. J. Theor. Phys. 55(7), 3309–3317 (2016)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSGoogle Scholar
  21. 21.
    Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)ADSGoogle Scholar
  22. 22.
    Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)ADSGoogle Scholar
  23. 23.
    Zhu, A.D., Xia, Y., Fan, Q.B., et al.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2), 457–460 (2006)Google Scholar
  24. 24.
    Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Multiparty controlled quantum secure direct communication with phase encryption. Int. J. Quantum Inf. 09(02), 801–807 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Nguyen, B.A.: Quantum dialogue. Phys. Lett. A 328(1), 6–10 (2004)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A Math. Gen. 38(25), 5761 (2005)ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Dong, L., Xiu, X.M., Gao, Y.J., et al.: A controlled quantum dialogue protocol in the network using entanglement swapping. Opt. Commun. 281(24), 6135–6138 (2008)ADSGoogle Scholar
  28. 28.
    Xiu, X.M., Dong, L., Gao, Y.J., et al.: Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test. Opt. Commun. 282(2), 333–337 (2009)ADSGoogle Scholar
  29. 29.
    Kao, S.H., Hwang, T.: Controlled quantum dialogue robust against conspiring users. Quantum Inf. Process 15(10), 4313–4324 (2016)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Mohapatra, A.K., Balakrishnan, S.: Controller-independent bidirectional quantum direct communication. Quantum Inf. Process 16(6), 147 (2017)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Cao, Y., Zha, X.W., Wang, S.K.: Controller-independent bidirectional direct communication with four-qubit cluster states. Int. J. Theor. Phys., 1–8 (2018)Google Scholar
  32. 32.
    Xin, J., Shou, Z.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418 (2006)ADSGoogle Scholar
  33. 33.
    Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. Chin. Series G: Phys. Mech. Astron. 50(5), 558–562 (2007)ADSGoogle Scholar
  34. 34.
    Xia, Y., Fu, C.B., Zhang, S., et al.: Quantum dialogue by using the GHZ state. arXiv:quant-ph/0601127 (2006)
  35. 35.
    Yan, X., Jie, S., Jing, N., et al.: Controlled secure quantum dialogue using a pure entangled GHZ states. Commun. Theor. Phys. 48(5), 841 (2007)ADSGoogle Scholar
  36. 36.
    Li, D., Xiao-Ming, X., Ya-Jun, G., et al.: Quantum dialogue protocol using a class of three-photon W states. Commun. Theor. Phys. 52(5), 853 (2009)ADSzbMATHGoogle Scholar
  37. 37.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. Chin. Series G: Phys. Mech. Astron. 51(5), 559–566 (2008)ADSGoogle Scholar
  38. 38.
    Shi, G.F., Xi, X.Q., Hu, M.L., et al.: Quantum secure dialogue by using single photons. Opt. Commun. 283(9), 1984–1986 (2010)ADSGoogle Scholar
  39. 39.
    Luo, Y.P., Lin, C.Y., Hwang, T.: Efficient quantum dialogue using single photons. Quant. Inf. Process. 13(11), 2451–2461 (2014)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Zhou, N.R., Hua, T.X., Wu, G.T., et al.: Single-photon secure quantum dialogue protocol without information leakage. Int. J. Theor. Phys. 53(11), 3829–3837 (2014)zbMATHGoogle Scholar
  41. 41.
    Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283(10), 2288–2293 (2010)ADSGoogle Scholar
  42. 42.
    Zhou, N.R., Wu, G.T., Gong, L.H., et al.: Secure quantum dialogue protocol based on W states without information leakage. Int. J. Theor. Phys. 52(9), 3204–3211 (2013)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635 (2000)ADSGoogle Scholar
  44. 44.
    Kao, S.H., Hwang, T.: Controlled quantum dialogue using cluster states. Quantum Inf. Process 16(5), 139 (2017)ADSzbMATHGoogle Scholar
  45. 45.
    Yun-Jie, X., Zhong-Xiao, M.: Controlled quantum n-party simultaneous direct communication. Commun. Theor. Phys. 48(1), 79 (2007)ADSMathSciNetGoogle Scholar
  46. 46.
    Tian-Yu, Y., Li-Zhen, J.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)Google Scholar
  47. 47.
    Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quantum Inf. 11(05), 1350051 (2013)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Long Zhang
    • 1
    • 3
  • Shu Dong
    • 1
  • Ke-Jia Zhang
    • 1
    • 2
    • 3
    • 4
    Email author
  • Hong-Wei Sun
    • 1
    • 2
  1. 1.School of Mathematical ScienceHeilongjiang UniversityHarbinChina
  2. 2.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Heilongjiang Provincial Key Laboratory of the Theory and Computation of Complex SystemsHarbinChina
  4. 4.School of Computer Science and TechnologyHarbin Engineering UniversityHarbinChina

Personalised recommendations