Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1892–1900 | Cite as

Cryptanalysis of Zhang et al’s Quantum Private Comparison and the Improvement

  • WanQing WuEmail author
  • HuanGuo Zhang
Article

Abstract

Based on EPR pairs, Zhang et al. analyzed the security of Yang and Tseng et al’s two QPC protocols, and proposed some new improvement strategies (Zhang and Zhang, Quantum Inform. Process. 12(5):1981–1990 2013). This paper points that Zhang et al’s protocol is insecure under a special attack, i.e. Trojan-horse attacks. To avoid this attack, we present an improved QPC protocol based on single particle encryption. Through security analysis of presented protocol, the improved protocol can resist Trojan horse attack (THA). We give a suggestion that non-orthogonal quantum states can be used to transmit information for reducing the leakage in a QPC protocol.

Keywords

Quantum private comparison (QPCEPR pairs Single particle encryption Trojan horse attack 

Notes

Acknowledgments

The authors are supported by the Major State Basic Research Development Program of China Nos. 2014CB340600, Natural Science Foundation of HeBei Province Nos. F2017201199, Science and technology research project of Hebei higher education Nos. QN2017020.

References

  1. 1.
    Broadbent, A., Schaffner, C.: Quantum cryptography beyond quantum key distribution. Des. Codes Crypt. 78(1), 351–382 (2016)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)ADSGoogle Scholar
  3. 3.
    Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)ADSGoogle Scholar
  4. 4.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A. 349(1), 53–58 (2005)ADSzbMATHGoogle Scholar
  5. 5.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65(3), 032302 (2002)ADSGoogle Scholar
  6. 6.
    Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inform. Process. 14(6), 2171–2181 (2015)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Shang, T., Zhao, X.J., Wang, C., et al.: Quantum homomorphic signature. Quantum Inform. Process. 14(1), 393–410 (2015)ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inform. Process. 12(9), 3127–3141 (2013)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inform. Process. 12(8), 2655–2669 (2013)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Wu, W.Q., Zhang, H.G., Wang, H.Z., et al.: Cryptanalysis of an MOR cryptosystem based on a finite associative algebra. Sci. China Inf. Sci. 59(3), 32111–032111 (2016)Google Scholar
  11. 11.
    Zhang, L., Sun, H.W., Zhang, K.J., et al.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56(5), 1–12 (2017)ADSzbMATHGoogle Scholar
  12. 12.
    Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A. 93(4), 042318 (2016)ADSGoogle Scholar
  13. 13.
    Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21(3), 98–108 (2014)ADSGoogle Scholar
  15. 15.
    Liu, C.J., Li, Z.H., Bai, C.M., et al.: Quantum-Secret-Sharing Scheme based on local distinguishability of orthogonal Seven-Qudit entangled states. Int. J. Theor. Phys. 57(3), 1–15 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bai, C.M., Li, Z.H., Xu, T.T., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inform. Process. 16(3), 59 (2017)ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Xu, T.T., Li, Z.H., Bai, C.M., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)ADSGoogle Scholar
  19. 19.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69(5), 052319 (2004)ADSGoogle Scholar
  20. 20.
    Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light: Sci. Appl. 5(9), e16144 (2016)Google Scholar
  21. 21.
    Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)ADSGoogle Scholar
  22. 22.
    Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62(22), 1519–1524 (2017)Google Scholar
  23. 23.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A: Math. Theory 42, 055305 (2009)ADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    Gao, X., Zhang, S.B., Chang, Y., et al.: Cryptanalysis of the quantum private comparison protocol based on the entanglement swapping between Three-Particle W-Class state and bell state. International Journal of Theoretical Physics, 1–7 (2018)Google Scholar
  25. 25.
    Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inform. Process. 16(7), 177–189 (2017)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Wang, F., Luo, M., Huiran, L.I., et al.: Quantum private comparison based on quantum dense coding. Sci. China 59(11), 112501 (2016)Google Scholar
  27. 27.
    Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)ADSGoogle Scholar
  28. 28.
    Pan, H.M.: Intercept-resend-measure Attack Towards Quantum Private Comparison Protocol Using Genuine Four-Particle Entangled States and its Improvement. Int. J. Theor. Phys. 57(7), 2034–2040 (2018)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Zhou, M.K.: Improvements of quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 57(1), 42–47 (2018)zbMATHGoogle Scholar
  30. 30.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inform. Process. 11(2), 373–384 (2012)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inform. Process. 12(2), 877–885 (2013)ADSMathSciNetzbMATHGoogle Scholar
  32. 32.
    Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inform. Process. 12(5), 1981–1990 (2013)ADSMathSciNetGoogle Scholar
  33. 33.
    Jain, N., Anisimova, E., Khan, I., et al.: Trojan-horse attacks threaten the security of practical quantum cryptography. J. Phys. 16(12), 123030–123050 (2014)MathSciNetGoogle Scholar
  34. 34.
    Jain, N., Stiller, B., Khan, I., et al.: Risk analysis of Trojan-Horse attacks on practical quantum key distribution systems. IEEE J. Sel. Top. Quantum Electron. 21(3), 168–177 (2014)ADSGoogle Scholar
  35. 35.
    Saleh, B.E.A., Teich, M.C., Editor, S., et al.: Fundamentals of Photonics. Wiley, New York (1991)Google Scholar
  36. 36.
    Deng, F.G., Zhou, P., Li, X.H., et al.: Robustness of two-way quantum communication protocols against Trojan horse attack. Phys. Rev. Lett. 92(1), 017901 (2004)Google Scholar
  37. 37.
    Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inform. Process. 14(2), 681–686 (2015)ADSMathSciNetzbMATHGoogle Scholar
  38. 38.
    Ma, H.Y., Bao, W.S., Li, H.W., et al.: Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack. Chin. Phys. B. 25(8), 080309 (2016)ADSGoogle Scholar
  39. 39.
    Yang, X., Wei, K., Ma, H., et al.: Trojan horse attacks on counterfactual quantum key distribution. Phys. Lett. A. 380(18–19), 1589–1592 (2016)ADSMathSciNetGoogle Scholar
  40. 40.
    Yu, J.T., Li, H.X., Ge, W.Z., et al.: Analysis of Trojan-Horse attack against untrusted source. Comput. Sci. Appl. 8(1), 59–66 (2018)Google Scholar
  41. 41.
    Yamamoto, T., Shimamura, J., Ozdemir, S.K., et al.: Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95(4), 040503 (2005)ADSGoogle Scholar
  42. 42.
    Ko, H., Lim, K., Oh, J., et al.: Informatic analysis for hidden pulse attack exploiting spectral characteristics of optics in plug-and-play quantum key distribution system. Quantum Inform. Process. 15, 1–18 (2016)zbMATHGoogle Scholar
  43. 43.
    Vinay, S., Kok, P.: Burning the Trojan Horse: Defending against Side-Channel Attacks in QKD. arXiv:1801.06496v1
  44. 44.
    Cai, Q.Y., Lv, H.: Quantum key distribution against trojan horse attacks. Chin. Phys. Lett. 24(5), 1154–1157 (2007)ADSGoogle Scholar
  45. 45.
    Larsson, J.A.: A Practical Trojan Horse for Bell-inequality-based Quantum Cryptography. Quantum Inf. Comput. 2(6), 434–442 (2002)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Zeng, G.H.: Security of quantum cryptography against trojan horse attacking. J. Softw. 15(8), 1259–1264 (2004)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Ma, H.Y., Fan, X.K.: Multicast communication protocol based on quantum key distribution against trojan horse attacking. J. Commun. 35(7), 193–198 (2014)Google Scholar
  48. 48.
    Yang, C.W., Hwang, T.: Trojan horse attack free fault-tolerant quantum key distribution protocols. Quantum Inf. Process. 13, 781C794 (2014)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Chang, C.H., Yang, C.W., Hwang, T.: Trojan Horse Attack Free Fault-Tolerant Quantum Key Distribution Protocols Using GHZ States. Int. J. Theor. Phys. 55(9), 3993C4004 (2016)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Lucamarini, M., Choi, I., Ward, M.B., et al.: Practical security bounds against the Trojan-horse attack in quantum key distribution. Phys. Rev. X. 5(3), 031030 (2015)Google Scholar
  51. 51.
    Ma, H.X., Bao, W.S., Li, H.W., et al.: Quantum hacking of two-way continuous-variable quantum key distribution using Trojan-horse attack. Chin. Phys. B. 25(8), 080309 (2016)ADSGoogle Scholar
  52. 52.
    Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A. 73(2), 457–460 (2006)Google Scholar
  53. 53.
    Vinay, S.E., Kok, P.: Extended analysis of the Trojan-horse attack in quantum key distribution. Phys. Rev. A. 042335, 97 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Cyber Security and ComputersHebei UniversityBaodingPeople’s Republic of China
  2. 2.Computer School of Wuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations