Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1861–1873 | Cite as

Hash Function Based on Quantum Walks

  • Yu-Guang YangEmail author
  • Jing-Lin Bi
  • Dan Li
  • Yi-Hua Zhou
  • Wei-Min Shi
Article

Abstract

Higher security and lower collision rate have always been people’s pursuits in the construction of hash functions. We consider a quantum walk where a walker is driven by two coins alternately. At each step, a message bit decides whether to swap two coins. In this way, a keyed hash function is constructed. Theoretically infinite possibilities of the initial parameters as the key ensure the security of the proposed hash function against the unforgery and collision resistance. Finally, we establish a generic quantum walk-based hash function model and give a guide in constructing hash functions in quantum walk architecture. It also provides a clue for the construction of other quantum walk-based cryptography protocols.

Keywords

Quantum cryptography Quantum walk Hash function Collision Birthday attack 

PACS

03.67.Dd 03.67.Hk 03.67.Lx 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61572053); Beijing Natural Science Foundation (Grant No.4182006); the National Natural Science Foundation of China (Grant Nos. 61671087,U1636106,61602019, 61571226, 61701229, 61702367); Natural Science Foundation of Jiangsu Province, China (Grant No.BK20170802); Jiangsu Postdoctoral Science Foundation.

References

  1. 1.
    Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) Advances in Cryptology—CRYPTO’89, Lecture Notes in Computer Science, vol. 435, pp. 416–427. Springer-Verlag, Berlin (1989)Google Scholar
  2. 2.
    Gibson, J.K.: Discrete logarithm hash function that is collision free and one way. IEEE Proceedings on Computers and Digital Techniques. 138(6), 407–410 (1991)CrossRefGoogle Scholar
  3. 3.
    Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) Advances in Cryptology—CRYPTO’89, Lecture Notes in Computer Science, vol. 435, Springer-Verlag, Berlin (1989), pp. 428–446 (1990)Google Scholar
  4. 4.
    Damgård, I. B.: Collision free hash functions and pubic key signature schemes. In: Chaum, D., Price, WL. (eds.) Advances in Cryptology, Proc. Eurocrypt’87, LNCS 304, pp. 203–216. Springer-Verlag, 1988Google Scholar
  5. 5.
    Rivest, R.L.: The MD4 Message Digest Algorithm. Advances in Cryptology-Crypto’90. Springer-Verlag, Berlin (1990)Google Scholar
  6. 6.
    Rivest, R. L.: The MD5 message digest algorithm. Request for Comments (RFC 1320), Internet Activities Board, Internet Privacy Task Force, 1992Google Scholar
  7. 7.
    Federal Information Processing Standards Publication 180, Secure Hash Standard (1993)Google Scholar
  8. 8.
    Federal Information Processing Standards Publication 180–1, Secure Hash Standard (1995)Google Scholar
  9. 9.
    Federal Information Processing Standards Publication 180–2, Secure Hash Standard (2004)Google Scholar
  10. 10.
    NIST Selects Winner of Secure Hash Algorithm (SHA-3) Competition. NIST (2012)Google Scholar
  11. 11.
    Zheng, Y., Pieprzyk, J., Seberry, J.: Haval-A one-way hashing algorithm with variable length of output. Advances in Cryptology, Aus-crypto’92, pp. 83–104. Springer-Verlag, New York (1992)Google Scholar
  12. 12.
    Dobbertin, H.: RIPEMD with two round compress function is not collision-free. J. Cryptol. 10, 51–69 (1997)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. In: Rump Session of Crypto’04 E-print, pp.199 (2004)Google Scholar
  14. 14.
    Wang, X., Lai, X., Feng, D., et al: Cryptanalysis of the hash functions MD4 and RIPEMD. In: Proceedings of Eurocrypt’05, Aarhus, Denmark, pp. 1–18 (2005)Google Scholar
  15. 15.
    Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Proceedings of Eurocrypt’05, Aarhus, Denmark, pp. 19–35 (2005)Google Scholar
  16. 16.
    Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first collision for full SHA-1. In: Katz J., Shacham H. (eds) Advances in Cryptology–CRYPTO 2017. LNCS 10401. Springer, ChamGoogle Scholar
  17. 17.
    Lucks, S.: Failure-friendly design principle for hash functions. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 474–494. Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Biham, E., Dunkelman, O.: A framework for iterative hash functions—HAIFA. Cryptology ePrint Archive: Report 2007/278 (2007)Google Scholar
  19. 19.
    Bertoni, G., Daemen, J., Peeters, M., Assche, G. V.: Sponge functions. ECRYPT Hash Workshop, 2007Google Scholar
  20. 20.
    Yang, Y.-J., Chen, F., Zhang, X.-M., Yu, J.-P., Zhang, P.: Research on the hash function structures and its application. Wireless Pers. Commun. 94, 2969–2985 (2017)CrossRefGoogle Scholar
  21. 21.
    Tiwari, H., Asawa, K.: A secure and efficient cryptographic hash function based on new-FORK-256. Egypt Inf J. 13, 199–208 (2012)CrossRefGoogle Scholar
  22. 22.
    Abdulaziz, M., Khalil, I., Imad, F., Mohammad, A.: A new design of cryptographic hash function: gear. International Journal on Perceptive and Cognitive Computing. 1(1), 29–34 (2015)Google Scholar
  23. 23.
    Aharonov, D., Ambainis, A., Kempe, J., et al. Quantum walks on Graphs. Proceedings of the 33rd ACM Symposium on Theory of Computing, pp. 50–59 (2001)Google Scholar
  24. 24.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210 (239, 2007)Google Scholar
  25. 25.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Tamascelli, D., Zanetti, L.: A quantum-walk-inspired adiabatic algorithm for solving graph isomorphism problems. J. Phys. A Math. Theor. 47(32), 325302 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chakraborty, S., Novo, L., Di Giorgio, S., Omar, Y.: Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Wang, Y., Shang, Y., Xue, P.: Generalized teleportation by quantum walks. Quantum Inf. Process. 16, 221 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yang, Y.-G., Yang, J.-J., Zhou, Y.-H., Shi, W.-M., Chen, X.-B., Li, J., Zuo, H.-J.: Quantum network communication: a discrete-time quantum-walk approach. Sci. Chin. Inf. Sci. 61(4), 042501 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Babatunde, A.M., Cresser, J., Twamley, J.: Using a biased quantum random walk as a quantum lumped element router. Phys. Rev. A. 90(1), 012339 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Xu, G., Chen, X.B., Zhao, D., Li, Z.P., Yang, Y.X.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14, 2959–2980 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Xu, G., Chen, X.B., Li, J., Wang, C., Yang, Y.X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14, 4297–4322 (2015)Google Scholar
  33. 33.
    Li, J., Chen, X.B., Xu, G., Yang, Y.X., Li, Z.P.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115–118 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Wei, Z.H., Chen, X.B., Niu, X.X., et al.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54, 2505 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li, D., Zhang, J., Guo, F.-Z.,·Huang, W., Wen, Q.-Y., Chen, H.: Discrete-time interacting quantum walks and quantum Hash schemes. Quantum Inf. Process. 12,1501–1513 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quant. Inf. Process. 6, 2167–2176 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yang, Y.-G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Xue, P., Sanders, B.C.: Two quantum walkers sharing coins. Phys. Rev. A. 85, 022307 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A. 67, 052307 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Stefaňák, M., Barnett, S.M., Kollár, B., Kiss, T., Jex, I.: Directional correlations in quantum walks with two particles. New J. Phys. 13, 033029 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Li, D., Yang, Y.-G., Bi, J.-L., Yuan, J.-B., Xu, J.: Controlled alternate quantum walks based quantum Hash function. Sci. Rep. 8, 225 (2018)ADSCrossRefGoogle Scholar
  42. 42.
    Yang, Y.-G., Zhang, Y.-C., Xu, G., Chen, X.-B., Zhou, Y.-H., Shi, W.-M.: Improving the efficiency of quantum Hash function by dense coding of coin operators in discrete-time quantum walk. Sci. China-Phys. Mech. Astron. 61(3), 030312 (2018)ADSCrossRefGoogle Scholar
  43. 43.
    Yang, Y.-G., Bi, J.-L., Chen, X.-B., Yuan, Z., Zhou, Y.-H., Shi, W.-M.: Simple hash function using discrete-time quantum walks. Quantum Inf. Process. 17, 189 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Cao, W.-F., Zhang, Y.-C., Yang, Y.-G., Li, D., Zhou, Y.-H., Shi, W.-M.: Constructing quantum Hash functions based on quantum walks on Johnson graphs. Quantum Inf. Process. 17, 156 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Merkle, R.C.: Secrecy, Authentication and Public Key Systems. Ph.D. thesis, UMI Research Press, Italy (1979)Google Scholar
  46. 46.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theory. IT-22, 644–654 (1976)Google Scholar
  47. 47.
    Merkle, R.C.: In Secrecy, Authentication, and Public Key Systems, vol. 18 of Computer science. Systems programming. UMI Research Press, 1982.Google Scholar
  48. 48.
    Rabin, M.O.: Digitalized signatures. In: Lipton, R., DeMillo, R. (eds.) Foundations of Secure Computation, pp. 155–166. New York, Academic Press (1978)Google Scholar
  49. 49.
    Damgård, I. B.: The application of claw free functions in cryptography. PhD Thesis, Aarhus University, Mathematical Institute, 1988Google Scholar
  50. 50.
    Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs practical. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.470–484 (1997)Google Scholar
  51. 51.
    Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Wang, Y.H.: Beyond regular semigroups. Semigroup Forum. 92(2), 414–448 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Zhang, J.K., Wu, X.J., Xing, L.S., Zhang, C.: Bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurcation Chaos. 26(11), 1630031 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Liang, X., Gao, F., Zhou, C.-B., Wang, Z., Yang, X.-J.: An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type. Adv. Difference Equ. 2018(25), (2018)Google Scholar
  55. 55.
    Wang, J., Liang, K., Huang, X., Wang, Z., Shen, H.: Dissipative fault-tolerant control for nonlinear singular perturbed systems with Markov jumping parameters based on slow state feedback. Appl. Math. Comput. 328, 247–262 (2018)Google Scholar
  56. 56.
    Cui, Y.J.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Meng, X.Z., Zhao, S.N., Feng, T., Zhang, T.H.: Dynamics of a novel nonlinear stochastic Sis epidemic model with double epidemic hypothesis. J. Math. Anal. Appl. 433(1), 227–242 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Yin, C., Cheng, Y.H., Zhong, S.M., Bai, Z.B.: Fractional-order switching type control law design for adaptive sliding mode technique of 3d fractional-order nonlinear systems. Complexity. 21(6), 363–373 (2016)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Liu, F., Mao, S.Z., Wu, H.X.: On rough singular integrals related to homogeneous mappings. Collect. Math. 67(1), 113–132 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Liu, F., Chen, T., Wu, H.X.: A note on the endpoint regularity of the Hardy-littlewood maximal functions. Bull. Aust. Math. Soc. 94(1), 121–130 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Zhou, J.P., Sang, C.Y., Li, X., Fang, M.Y., Wang, Z.: H∞ consensus for nonlinear stochastic multi-agent systems with time delay. Appl. Math. Comput. 325, 41–58 (2018)Google Scholar
  62. 62.
    Liu, F., Wang, F.: Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points. Acta Math. Sin. (Engl. Ser.). 32(4), 507–520 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Cui, Y.J.: Existence of solutions for coupled integral boundary value problem at resonance. Publ. Math. Debr. 89(1–2), 73–88 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Cui, Y.J., Zou, Y.M.: Existence of solutions for second-order integral boundary value problems. Nonlinear Anal. Modell. Control. 21(6), 828–838 (2016)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Dong, H.H., Guo, B.Y., Yin, B.S.: Generalized fractional supertrace identity for Hamiltonian structure of Nls-Mkdv hierarchy with self-consistent sources. Anal. Math. Phys. 6(2), 199–209, 2016Google Scholar
  66. 66.
    Liu, F., Wu, H.X.: L-p bounds for marcinkiewicz integrals associated to homogeneous mappings. Monatshefte Fur Mathematik. 181(4), 875–906 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Li, X.P., Lin, X.Y., Lin, Y.Q.: Lyapunov-Type conditions and stochastic differential equations driven by G-brownian motion. J. Math. Anal. Appl. 439(1), 235–255 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Liu, F., Zhang, D.Q.: Multiple singular integrals and maximal operators with mixed homogeneity along compound surfaces. Math. Inequal. Appl. 19(2), 499–522, 2016Google Scholar
  69. 69.
    Zhao, Y., Zhang, W.H.: Observer-based controller design for singular stochastic Markov jump systems with state dependent noise. J. Syst. Sci. Complex. 29(4), 946–958 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Ma, H.J., Jia, Y.M.: Stability analysis for stochastic differential equations with infinite Markovian switchings. J. Math. Anal. Appl. 435(1), 593–605 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Hu, Q.Y., Yuan, L.: A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Advances in Computational Mathematics 44(1):245–275 (2018)Google Scholar
  72. 72.
    Zhang, T.Q., Ma, W.B., Meng, X.Z., Zhang, T.H.: Periodic solution of a prey-predator model with nonlinear state feedback control. Appl. Math. Comput. 266, 95–107 (2015)MathSciNetzbMATHGoogle Scholar
  73. 73.
    Liu, F., Zhang, D.Q.: Parabolic marcinkiewicz integrals associated to polynomials compound curves and extrapolation. Bull. Korean Math. Soc. 52(3), 771–788 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Ling, S.T., Cheng, X.H., Jiang, T.S.: An algorithm for coneigenvalues and coneigenvectors of quaternion matrices. AACA. 25(2), 377–384 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Liu, F., Wu, H.X., Zhang, D.Q.: L-p bounds for parametric marcinkiewicz integrals with mixed homogeneity. Math. Inequal. Appl. 18(2), –453, 469 (2015)Google Scholar
  76. 76.
    Hu, Q.Y., Yuan, L.: A plane wave method combined with local spectral elements for nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations. Adv. Comput. Math. 44(1),245–275 (2018)Google Scholar
  77. 77.
    Gao, M., Sheng, L., Zhang, W.H.: Stochastic H-2/H-infinity control of nonlinear systems with time-delay and state-dependent noise. Appl. Math. Comput. 266, 429–440 (2015)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Li, Y.X., Huang, X., Song, Y.W., Lin, J.N.: A new fourth-order memristive chaotic system and its generation. Int. J. Bifurcation Chaos. 25(11), 1550151 (2015)ADSMathSciNetCrossRefGoogle Scholar
  79. 79.
    Xu, X.X.: A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and darboux transformation. Appl. Math. Comput. 251, 275–283 (2015)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Liu, F.: Rough maximal functions supported by subvarieties on Triebel-Lizorkin spaces, Revista de la Real Academia de Ciencias Exactas. Fisicas y Nat. Ser. A. Math. 112(2),593–614 (2018)Google Scholar
  81. 81.
    Wang, W., Zhang, T.Q.: Caspase-1-mediated pyroptosis of the predominance for driving CD4++ T cells death: a nonlocal spatial mathematical model. Bull. Math. Biol. 80(3),540–582 (2018)Google Scholar
  82. 82.
    Li, H.J., Zhu, Y.L., Liu, J., Wang, Y.: Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols. Appl. Math. Comput. 326,1–15 (2018)Google Scholar
  83. 83.
    Cui, Y.J., Ma, W.J., Sun, Q., Su, X.W.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal. Modell. Control. 23(1),31–39 (2018)Google Scholar
  84. 84.
    Liu, F., Mao, S.Z.: L-p bounds for nonisotropic marcinkiewicz integrals associated to surfaces. J. Aust. Math. Soc. 99(3), 380–398 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Tramontana, F., Elsadany, A.A., Xin, B.G., Agiza, H.N.: Local stability of the cournot solution with increasing heterogeneous competitors. Nonlinear Anal. Real World Appl. 26, 150–160 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Cui, Y.J., Ma, W.J., Wang, X.Z., Su, X.W.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. (9),1–10 (2018)Google Scholar
  87. 87.
    Tan, C., Zhang, W.H.: On observability and detectability of continuous-time stochastic Markov jump systems. J. Syst. Sci. Complex. 28(4), 830–847 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  88. 88.
    Yan, Z.G., Zhang, G.S., Wang, J.K., Zhang, W.H.: State and output feedback finite-time guaranteed cost control of linear it stochastic systems. Journal of Systems Science & Complexity. 28(4), 813–829 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Li, L., Wang, Z., Li, Y.X., Shen, H., Lu, J.W.: Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays. Appl. Math. Comput. 330,152–169 (2018)Google Scholar
  90. 90.
    Jiang, D.-H., Wang, X.-J., Xu, G.-B., Lin, J.-Q.: A denoising-decomposition model combining TV minimisation and fractional derivatives. East Asia J. Appl. Math. 8,447–462 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Guang Yang
    • 1
    • 2
    Email author
  • Jing-Lin Bi
    • 1
  • Dan Li
    • 3
  • Yi-Hua Zhou
    • 1
  • Wei-Min Shi
    • 1
  1. 1.Faculty of Information TechnologyBeijing University of TechnologyBeijingChina
  2. 2.Beijing Key Laboratory of Trusted ComputingBeijingChina
  3. 3.College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations