Cryptanalysis and Improvement of Ye et al’s Quantum Private Comparison Protocol

  • WanQing WuEmail author
  • QingYu Cai
  • ShuoMei Wu
  • HuanGuo Zhang


Recently, Ye et al. (Int. J. Theor. Phys. 56, 1517–1529, 2017) proposed a quantum private comparison (QPC) protocol based on five-qubit entanglement state. Two parties can verify that their secret information is equal or not with the help of the semi-honest third party (TP). However, in this paper we will point out the Ye et al.’s initial protocol is not safe under a special participant attack. That is a malicious participant can get the other party’s secret input information illegally under the forgery attack. Furthermore, we give two possible improvement protocols, which can perform this protocol secure against this kind of attack.


Cryptanalysis Quantum private comparison Participant attack 



The authors are supported by the National Natural Science Foundation of China under Grant Nos. 11725524, 61471356, Major State Basic Research Development Program of China Nos. 2014CB340600, Natural Science Foundation of HeBei Province Nos. F2017201199, Science and technology research project of Hebei higher education Nos. QN2017020.


  1. 1.
    Li, Y.M., Wang, X.Y., Bai, Z.L., et al.: Continuous variable quantum key distribution. Chin. Phys. B 5(4), 102–108 (2017)Google Scholar
  2. 2.
    Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Liao, S.K., Cai, W.Q., Liu, W.Y., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Zhang, J.Z., Yang, Y.Y., Xie, S.C.: A Third-party E-payment protocol based on quantum group blind signature. Int. J. Theor. Phys. 56(9), 2981–2989 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Shang, T., Zhao, X.J., Wang, C., et al.: Quantum homomorphic signature. Quantum Inf. Process 14(1), 393–410 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Liu, C.J., Li, Z.H., Bai, C.M., et al.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal seven-qudit entangled states. Int. J. Theor. Phys. 57(3), 1–15 (2018)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bai, C.M., Li, Z.H., Xu, T.T., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process 16(3), 59 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Xu, T.T., Li, Z.H., Bai, C.M., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, Z.H., Chen, H.W.: Analysis and revision of secure quantum dialogue via cavity QED. Int. J. Theor. Phys. 56(7), 2303–2309 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, W., Ding, D.S., Sheng, Y.B., et al: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118(22), 220501 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gao, X., Zhang, S.B., Chang, Y., et al.: Cryptanalysis of the quantum private comparison protocol based on the entanglement swapping between three-particle W-class state and bell state. Int. J. Theor. Phys. 1–7 (2018)Google Scholar
  13. 13.
    Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf. Process 16(7), 177–189 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xu, L., Zhao, Z.: Quantum private comparison protocol based on the entanglement swapping between (χ +), state and W-class state. Quantum Inf. Process 16(12), 302 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Wang, F., Luo, M., Huiran, L.I., et al: Quantum private comparison based on quantum dense coding. Sc. China 59(11), 112501 (2016)Google Scholar
  17. 17.
    Ye, T.Y.: Quantum private comparison via cavity QED. Commun. Theor. Phys. 67(2), 147–156 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Lang Y.F.: Semi-quantum private comparison using single photons. Int. J. Theor. Phys. (2):1–8 (2018)Google Scholar
  19. 19.
    Liu, B., Xiao, D., Huang, W., et al.: Quantum private comparison employing single-photon interference. Quantum Inf. Process 16(7), 180 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process 11(2), 373–384 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yang, Y.G., Xia, J., Jia, X., et al.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process 12(2), 877–885 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process 14(2), 681–686 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • WanQing Wu
    • 1
    • 2
    Email author
  • QingYu Cai
    • 2
  • ShuoMei Wu
    • 3
  • HuanGuo Zhang
    • 4
  1. 1.School of Cyber Security and ComputersHebei UniversityBaodingPeople’s Republic of China
  2. 2.State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanPeople’s Republic of China
  3. 3.College of Computer Science and EngineeringShijiazhuang UniversityShijiazhuangPeople’s Republic of China
  4. 4.Computer School of Wuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations