Interpolations in Posets and Effect Algebras

  • Josef TkadlecEmail author


We study various types of the interpolation property in posets and effect algebras. We present connections to other properties of posets and effect algebras (completeness, orthocompleteness, maximality property) and a theorem about preserving compatibility to suprema and infima using an interpolation property.


Effect algebra Poset Interpolation Orthocomplete Weakly orthocomplete Maximality property Pseudolattice Compatibility 



This work was supported by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/16_019/ 0000778.


  1. 1.
    Bennett, M., Foulis, D.: Phi-symmetric effect algebras. Found. Phys. 25, 1699–1722 (1995). ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Bratislava (2000)CrossRefzbMATHGoogle Scholar
  3. 3.
    Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24, 1331–1352 (1994). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Goodearl, K.R.: Partially ordered abelian groups with interpolation. Amer. Math. Soc. Surveys and Monographs, vol. 20, Providence, Rhode Island (1986).
  5. 5.
    Jenča, G., Riečanová, Z.: On sharp elements in lattice ordered effect algebras. BUSEFAL 80, 24–29 (1999)Google Scholar
  6. 6.
    Ovchinnikov, P.G.: On alternative orthomodular posets. Demonstratio Math. 27, 89–93 (1994)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Tkadlec, J.: Conditions that force an orthomodular poset to be a Boolean algebra. Tatra Mt. Math. Publ. 10, 55–62 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Tkadlec, J.: Atomistic and orthoatomistic effect algebras. J. Math. Phys. 49, 053505 (2008). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tkadlec, J.: Effect algebras with the maximality property. Algebra Universalis 61, 187–194 (2009). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Electrical EngineeringCzech Technical University in PraguePrahaCzech Republic

Personalised recommendations