Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 6, pp 1836–1844 | Cite as

Gravitational Frames and Scalar Field Dynamics

  • M. T. Ozaydin
  • N. PirincciogluEmail author
Article

Abstract

Scalar fields describe interesting phenomena such as Higgs bosons, dark matter and dark energy, and are found to be quite common in physical theories. These fields are susceptible to gravitational forces so that being massless is not enough to remain conformal invariant. They should also be connected directly to the scalar curvature. Because of this characteristics, we investigated the structure and interactions of scalar fields under the conformal transformations. We show how to reduce the quadratic quantum contributions in the single scalar field theory. In the multi-scalar field theories, we analyzed interactions in certain limits. We suggest a new method for stabilizing Higgs bosons.

Keywords

Scalar fields Quantum contributions Conformal transformation Higgs field 

Notes

Acknowledgments

The authors would like to thank D. A. Demir for inspiration of research and useful discussion.

References

  1. 1.
    Einstein, A.: Ann. Phys. 17, 891–921 (1905)CrossRefGoogle Scholar
  2. 2.
    Weyl, H.: Sitzug. der Preus. Akad. d. Wissen. The Principle of Relativity, pp 201–216. Dover, New York (1918). (1923)Google Scholar
  3. 3.
    Weyl, H.: Space-Time-Matter. Translated from the 4Th German Edition by H. L. Brose., Methuen, London., Dover, New York (1952) (1922)Google Scholar
  4. 4.
    Cartan, E.: Comptes Rendus de Academie des Sciences 174, 857 (1922)Google Scholar
  5. 5.
    Cartan, E.: Jour. des Math. Pures et Appl. 2, 167–192 (1923)Google Scholar
  6. 6.
    Cartan, E.: Ann. Ec. Norm. 41, 1–25 (1924)ADSGoogle Scholar
  7. 7.
    Cartan, E.: Ann. Ec. Norm. 42, 17–88 (1925)ADSGoogle Scholar
  8. 8.
    Gursey, F.: Ann. Phys. 24, 211–242 (1963)ADSCrossRefGoogle Scholar
  9. 9.
    Fubini, S.: Il nuovo cimento 34 A, 521–554 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    Englert, F., Truffin, C., Gastmans, R.: Nuclear Phys. B 117, 407–432 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    Dicke, R.H.: Phys. Rev. 125, 2163 (1962)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hoyle, F., Narlikar, J.V.: Action at a Distance in Physics and Cosmology. W. H. Freeman and Company, San Francisco (1974)Google Scholar
  13. 13.
    Faraoni, V., Gunzig, E.: Int. Jour. Theor. Phys. 38, 217–225 (1999). arXiv:9910176 [astro-ph]
  14. 14.
    Magnano, G., Sokolowski, L.M.: Phys. Rev. D 50, 5039 (1994). arXiv:9312008 [gr-qc]
  15. 15.
    Postma M., Volponi M.: Phys. Rev. D 90, 103516 (2014). arXiv: 1407.6874v2 [astro-ph.CO]
  16. 16.
    Karahan, C.N., Dogangun, O., Demir, D.A.: Ann. Phys. 524, 461–469 (2012). arXiv:1204.6366v2 [gr-qc]MathSciNetCrossRefGoogle Scholar
  17. 17.
    Demir, D.A.: arXiv:1207.4584v1 [hep-ph]
  18. 18.
    Carloni, S., Elizalde, E., Odintsov, S.: arXiv:0907.3941v2 [gr-qc]
  19. 19.
    Demir, D.A.: arXiv:1110.3815v4 [hep-ph]
  20. 20.
    See the CERN Press Release PR17.12E at http://www.cern.ch (2013)
  21. 21.
    Schwinger, J.: Particles, Sources, and Fields. 388–406 (1970)Google Scholar
  22. 22.
    Nobili, R.: arXiv:1201.2314v2 [hep-th]. arXiv:1201.3343v3 [hep-th]
  23. 23.
    Wald, R.M.: General Relativity, pp 445–449. The University of Chicago Press, Chicago and London (1984)CrossRefzbMATHGoogle Scholar
  24. 24.
    Martin, S.P.: arXiv:9709356v6 [hep-ph]

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsDicle UniversityDiyarbakirTurkey

Personalised recommendations