Novel Efficient Circuit Design for Multilayer QCA RCA

  • Hamid Reza Roshany
  • Abdalhossein RezaiEmail author


The novel emerging technology, QCA technology, is a candidate for replacing CMOS technology. Full Adder (FA) circuits are also widely used circuits in arithmetic circuits design. In this paper, two new multilayer QCA architectures are presented: one-bit FA and 4-bit Ripple Carry Adder (RCA). The designed one-bit multilayer FA architecture is based on a new XOR gate architecture. The designed 4-bit multilayer QCA RCA is also developed based on the designed one-bit multilayer QCA FA. The functionality of the designed architectures are verified using QCADesigner tool. The results indicate that the designed architecture for 4-bit multilayer QCA RCA requires 5 clock phases, 125 QCA cells, and 0.17 μm2 area. The comparison results confirm that the designed architectures provide improvements compared with other adder architectures in terms of cost, cell count, and area.


Ripple carry adder Full adder Quantum-dot cellular automata Multilayer design, XOR gate 



  1. 1.
    Compano, R., Molenkamp, L., Paul, D.: Roadmap for nanoelectronics. European commission IST programme, future and emerging technologies (2000)Google Scholar
  2. 2.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology. 4(1), 49–57 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE. 85(4), 541–557 (1997)CrossRefGoogle Scholar
  4. 4.
    Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: A novel design of 5-input majority gate in quantum-dot cellular automata technology. In: Computer Applications & Industrial Electronics (ISCAIE), 2017 IEEE Symposium on 2017, Pp. 13–16. IEEE (2017)Google Scholar
  5. 5.
    Rashidi, H., Rezai, A.: Design of novel efficient multiplexer architecture for quantum-dot cellular automata. J. Nano- Electron. Phys. 9(1), 1012–1011 (2017)CrossRefGoogle Scholar
  6. 6.
    Rashidi, H., Rezai, A.: High-performance full adder architecture in quantum-dot cellular automata. J. Eng. 1(1), (2017)Google Scholar
  7. 7.
    Mokhtari, D., Rezai, A., Rashidi, H., Rabiei, F., Emadi, S., Karimi, A.: Design of novel efficient full adder architecture for quantum-dot cellular automata technology. Facta Univ. Ser.: Electron. Energ. (FU Elec. Energ). 31(2), 279–285 (2018)CrossRefGoogle Scholar
  8. 8.
    Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results Phys. 7, 1389–1395 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Mohammadi, M., Mohammadi, M., Gorgin, S.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)CrossRefGoogle Scholar
  10. 10.
    Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)CrossRefGoogle Scholar
  11. 11.
    Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)CrossRefGoogle Scholar
  12. 12.
    Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays. 7(2), 177–189 (2012)Google Scholar
  13. 13.
    Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)CrossRefGoogle Scholar
  14. 14.
    Niknezhad Divshali, M., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57, 3326–3339 (2018). MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ahmad, F., Bhat, G.M., Ahmad, P.Z.: Novel adder circuits based on quantum-dot cellular automata (QCA). Circuits Syst. 5(06), 142–152 (2014)CrossRefGoogle Scholar
  16. 16.
    Arani, I.E., Rezai, A.: Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology. J. Comput. Electron. 1–9 (2018)Google Scholar
  17. 17.
    Ahmad, F., Bhat, G.M., Khademolhosseini, H., Azimi, S., Angizi, S., Navi, K.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Balali, M., Rezai, A.: Design of low-complexity and high-speed coplanar four-bit ripple carry adder in QCA technology. Int. J. Theor. Phys. 1–13 (2018)Google Scholar
  19. 19.
    Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., Sayedsalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46(6), 462–471 (2015)CrossRefGoogle Scholar
  20. 20.
    Mustafa, M., Beigh, M.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ACECR Institute of Higher Education, Isfahan BranchIsfahanIran

Personalised recommendations