Advertisement

Quantum Binary Search Algorithm

  • Xiangqun FuEmail author
  • Wansu Bao
  • Jianhong Shi
  • Tan Li
  • Xiang Wang
Article

Abstract

Problems which can be solved on classical computer in polynomial time may not be able to be solved on quantum computer. And a quantum algorithm will be invalid if the Oracle can’t be efficiently implemented. Thus, in this paper, a quantum binary search algorithm is presented. The computation complexity is polynomial time. Based on the algorithm, the quantum meet-in-the-middle search algorithm for knapsack problem can be efficiently realized on quantum computer. Especially the algorithm can be applied to search an element from an ordered database.

Keywords

Quantum algorithm Quantum binary algorithm NPC problem Meet-in-the-middle Grover’s algorithm 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the National Basic Research Program of China (Grant No. 2013CB338002) and the National Natural Science Foundation of China (Grant No. 61502526).

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21, 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory. 31, 473–481 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hallgren, S.: Polynomial-time quantum algorithm for Pell’s equation and the principal ideal problem. J.ACM. 54(1), 653–658 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35(1), 170–188 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Li, J., Peng, X., Du, J., Suter, D.: An efficient exact quantum algorithm for the integer square-free decomposition problem. Sci. Rep. 2(260), 1–5 (2012)Google Scholar
  7. 7.
    Laarhoven, T., Mosca, M., van de Pol, J.: Finding shortest lattice vectors faster using quantum search. Des. Codes Crypt. 77, 375–400 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wang, Y., Zhang, H., Wang, H.: Quantum polynomial-time fixed-point attack for RSA. China Commun. 15(2), 25–32 (2018)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, G.: Quantum algorithm for linear regression. Phys. Rev. A. 96, 012335 (2017)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Chao-Hua, Y., et al.: Quantum algorithm for association rules mining. Phys. Rev. A. 94, 042311 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Montanaro, A., Pallister, S.: Quantum algorithms and the finite element method. Phys. Rev. A. 93, 032324 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Huang, H.-L., et al.: Experimental blind quantum computing for a classical client. Phys. Rev. Lett. 050503, 119 (2017)Google Scholar
  13. 13.
    Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press LLC, Canada (1997)zbMATHGoogle Scholar
  14. 14.
    Coffey, M. W.: A diabatic quantum computing solution of the knapsack problem. arXiv:1701.05584v1 (2017)Google Scholar
  15. 15.
    Daskin, A.: A quantum approach to subset-sum and similar problems. arXiv:1707.08730v4 (2017)Google Scholar
  16. 16.
    Ohya, M., Volovich, I.V.: New quantum algorithm for studying NP-complete problems. Rep. Math. Phys. 52(1), 25–33 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Arvind, V., Schuler, R.: The quantum query complexity of 0-1 knapsack and associated claw problems. Lect. Notes Comput. Sci. 2906, 168–177 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Grover, L.K.: A fast quantum mechanics algorithm for database search. In: Proceedings 28th ACM Symposium on Theory of Computation, pp. 212–219. ACM Press, New York (1996)Google Scholar
  19. 19.
  20. 20.
    Bravyi, S., Gosset, D., König, R.: Quantum advantage with shallow circuits. Science. 362, 308–311 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Henan Key Laboratory of Quantum Information and CryptographyZhengzhou Information Science and Technology InstituteZhengzhouChina
  2. 2.Synergetic Innovation Center of Quantum Information and Quantum PhysicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations