Zo Decay into D-mesons via Fragmentation

  • T. OsatiEmail author
  • P. Waysee


Among Z0 decay modes, it’s decay into charm mesons has been measured with relatively large rate. In this article, Z0 decay into D0, \(\bar {D}^{0}\), D±, D(2010)± mesons via fragmentation is studied. To this purpose, at first we will calculate the fragmentation functions of c quark into the pseudoscalar and vector states of D mesons in the lowset order of pQCD. Then using these functions we will calculate branching ratios, \(\frac {{\Gamma }_{Z^{0}\rightarrow (D^{i} +X)}}{{\Gamma }_{tot}}\) for the decay of Z0 into the D and D mesons, considering longitudinal and transverse polarizations. Note that our results have a good agreement with the exprimental data and shows the dominant mechanism in direct fragmentation quarks into D and D* are c and \(\bar {c}\) quarks fragmentation.


Fragmentation function Decay rate Branching ratio Width decay 



  1. 1.
    Suzuki, M.: Phys. Rev. D 33, 676 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Braaten, E., Cheung, K., Yuan, T. C.: Phys. Rev. D 48, 5049 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    Patrignani, C., et al.: Particle data group. Chin. Phys. C 40, 100001 (2016). and 2017 updateADSCrossRefGoogle Scholar
  4. 4.
    Sjostrand, T.: Comput. Phys. Commun. 39, 347 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    Sjostrand, T., Bengtsson, M.: Comput. Phys. Commun 43, 367 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    Braaten, E., Cheung, K., Yuan, T. C.: Phys. Rev. D 48, 4230 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Lepage, G. P., Brodsky, S. J.: Phys. Rev. Lett 87, 359 (1979)CrossRefGoogle Scholar
  8. 8.
    Brodsky, S. J., Ji, C. R.: Phys. Rev. Lett 55, 2257 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    Gomshi Nobary, M. A., Osati, T.: Mod. Phys. Lett 15, 455–464 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Gomshi Nobary, M.A., Sepahvand, R.: Phys. Rev. D 71, 034024 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Boroun, G.R., Osati, T., Zarrin, S.: Int. Theor. Phys. 54, 3831–3840 (2015)CrossRefGoogle Scholar
  12. 12.
    Braaten, E., Yuan, T. C.: Phys. Rev. Lett 71, 1673 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    Bazavov, A., et al.: Fermilab lattice and MILC collaborations. Phys. Rev. D 85, 114506 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Davies, C. T. H., McNeile, C., Follana, E., Lepage, G. P., Na, H., Shigemitsu, J.: Phys. Rev. D 82, 114504 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Becirevic, D., Lubicz, V., Sanfilippo, F., Simula, S., Tarantino, C.: JHEP 1202, 042 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Chen, W.-P., Chen, Y.-C., Chiu, T.-W., Chou, H.-Y., Guu, T.-S., Hsied, T.-H.: Phys. Lett B 736, 231–236 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Eisen Stein, B.I., et al.: CLEO collaboration. Phys. Rev. D 78, 052003 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Ablikim, M., et al.: BESIII collaboration. Phys. Rev. D 89, 051104 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsRazi UniversityKermanshahIran

Personalised recommendations