International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1337–1349 | Cite as

Quantum Blind Signature Scheme with Cluster States Based on Quantum Walk Cryptosystem

  • Jinjing ShiEmail author
  • Hui Chen
  • Fang Zhou
  • Libin Huang
  • Shuhui Chen
  • Ronghua Shi


An ingenious quantum blind signature scheme with cluster states based on quantum walk cryptosystem is proposed, in which the keys are generated with quantum walks. Initial phase, signing phase and verification phase are included. In the signing phase, Alice sends the encrypted message to the signer Charlie and requests a quantum blind signature. In the verification phase, the verifier Bob verifies the authenticity and integrity of the message based on the results of the final measurements. The security analysis shows that the security of secret keys and the signature scheme, and it can be neither forged nor disavowed by illegal participants or attackers. Different from previous signature schemes, the original message is encrypted by the quantum walk algorithm, which is firstly applied to the signature scheme. Importantly, it has a wide application in e-commerce or e-payment system.


Quantum signature Blind signature Cluster sates Quantum walks Quantum cryptography 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61401519, 61872390), the Natural Science Foundation of Hunan Province (2017JJ3415), the Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20130162110012).


  1. 1.
    Merkle, R.C.: A Certified Digital Signature. Conference on the Theory and Application of Cryptology, pp 218–238. Springer, New York (1989)Google Scholar
  2. 2.
    Harn, L.: New digital signature scheme based on discrete logarithm. Electron. Lett. 30(5), 396–398 (1994)CrossRefGoogle Scholar
  3. 3.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings. IEEE, pp. 124–134 (1994)Google Scholar
  5. 5.
    Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)
  6. 6.
    Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. Secur. Snal. A 82, 042325 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G: Phys. Mech. Astron. 51, 1079C1088 (2008)zbMATHGoogle Scholar
  11. 11.
    Shi, J., Shi, R., Tang, Y., et al.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform. Quantum Inf. Process. 10(5), 653–670 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chaum, D.: Blind Signatures for Untraceable Payments. Advances in Cryptology, pp 199–203. Springer, US (1983)zbMATHGoogle Scholar
  13. 13.
    Wen, X., Chen, Y., Fang, J.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549–558 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Okamoto, T.: An Electronic Voting Scheme//Advanced IT Tools, pp 21–30. Springer, US (1996)Google Scholar
  15. 15.
    Wen, X., Niu, X., Ji, L., et al.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Tian-Yin, W., Qiao-Yan, W.: Fair quantum blind signatures. Chin. Phys. B 19(6), 060307 (2010)CrossRefGoogle Scholar
  17. 17.
    Shi, J.J., Shi, R.H., Guo, Y., et al.: Batch proxy quantum blind signature scheme. Sci. China Inf. Sci. 56(5), 1–9 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Qi, S., Zheng, H., Qiaoyan, W., et al.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on ”quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Xu, R., Huang, L., Yang, W., et al.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654–3658 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Zou, X., Qiu, D.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12(6), 2071–2085 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zuo, H.: Cryptanalysis of quantum blind signature scheme. Int. J. Theor. Phys. 52(1), 322–329 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with χ-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Rodrigues, C.V.J., Mateus, P., Paunkovic, N., et al.: Quantum walks public key cryptographic system. Int. J. Quantum Inf. 13(07) (2015)Google Scholar
  25. 25.
    Vlachou, C., Rodrigues, J., Mateus, P., et al.: Quantum walk public-key cryptographic system. Int. J. Quantum Inf. 13(07), 1550050 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    Yang, Y.G., Pan, Q.X., Sun, S.J., et al.: Novel image encryption based on quantum walks. Sci. Rep. 5, 7784 (2015)CrossRefGoogle Scholar
  28. 28.
    Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Phys. Rev. Lett. 98(19), 190504 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74(6), 062320 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Gong, L.H., Song, H.C., He, C.S., Liu, Y., Zhou, N.R.: A continuous variable quantum deterministic key distribution based on two-mode squeezed states. Phys. Scr. 89(3), 035101 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Zhou, N.R., Li, J.F., Yu, Z.B., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16 (1), 4 (2017)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Information Science, EngineeringCentral South UniversityChangshaChina

Personalised recommendations