Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1315–1325 | Cite as

A Novel E-payment Protocol Implented by Blockchain and Quantum Signature

  • Jia-Lei ZhangEmail author
  • Ming-Sheng Hu
  • Zhi-Juan Jia
  • Bei-Gong
  • Li-Peng Wang
Article

Abstract

Based on blockchain and quantum signature, a novel E-payment protocol is proposed in this paper. Our E-payment protocol could protect user’s anonymity as the traditional E-payment systems do, and also have unconditional security which the classical E-payment systems can not provide. Our scheme adopt the techniques of blockchain, quantum key distribution, one-time pad and quantum proxy blind signature. Furthermore, compared with the existing quantum E-payment systems, the blockchain technology is introduced to make our scheme more secure.

Keywords

E-payment protocol Quantum proxy blind signature Blockchain Unconditional security 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China(Grant No. U1304614, U1204703), Henan Province Education Science Plan General Topic “Research on Trusted Degree Certification Based on Block-chain” (Grant No.(2018)-JKGHYB-0279), Zhengzhou Innovative Science and Technology Talent Team Construction Project Fund Project(Grant No.131PCXTD597), Henan Science and Technology Project(Grant No.162102310238).

References

  1. 1.
    Chaum, D.: Blind signature for untraceable payments. Advances in cryptology. In: Proceeding of Crypto82, pp. 199–203. Springer, New York (1983)Google Scholar
  2. 2.
    Chaum, D., Heyst, E.: Group Signatures, Advances in Cryptology-Eurocrypt91. LNCS 547, vol. 257–265. Springer, Berlin (1991)Google Scholar
  3. 3.
    Maitland, G., Boyd, C.: Fair Electronic Cash Based on a Group Signature Scheme, ICICS 2001, LNCS 2229, vol. 461–465. Springer, Berlin (2001)Google Scholar
  4. 4.
    Canard, S., Traor, J.: On fair E-Cash Systems Based on Group Signature Schemes, ACISP 2003, LNCS 2727, pp. 237–248. Springer, Berlin (2003)Google Scholar
  5. 5.
    Traor, J.: Group Signatures and Their Relevance to Privacy-Protecting Offline Electronic Cash Systems, ACISP99 LNCS 1587, pp. 228–243. Springer, Berlin (1999)Google Scholar
  6. 6.
    Qiu, W., Chen, K., Gu, D.: A New Off-Line Privacy Protecting E-Cash System with Revocable Anonymity, ISC 2002, LNCS 2433, pp. 177–190. Springer, Berlin (2002)Google Scholar
  7. 7.
    Wen, X.J., Nie, Z.: An E-payment system based on quantum blind and group signature. Phys. Scr. 82(6), 5468–5478 (2010)Google Scholar
  8. 8.
    Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum. Inf. Process. 12(1), 549–558 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quantum. Inf. Process. 12(4), 1651–1657 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhou, R.G., Wei, L., et al.: An online banking system based on quntum cryptography communication. Int. J. Thero. Phys. 53, 2177–2190 (2014)CrossRefzbMATHGoogle Scholar
  11. 11.
    Shao, Q.F., Jin, C.Q., Zhang, Z., et al.: Blockchain: architecture and research progress. Chinese J. Comput. 40(157). http://kns.cnki.net/kcms/detail/11.1826 (2017)
  12. 12.
    Shao, A.X., Zhang, J.Z., Xie, S.C.: An E-payment protocol based on quantum multi-proxy blind signature. Int. J. Theor. Phys. 56(4), 1241–1248 (2017)CrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, J.Z., Yang, Y.Y., Xie, S.C.: A third-party E-payment protocol based on quantum group blind signature. Int. J. Theor. Phys. 56(9), 2981–2989 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48–57. New Delhi (1996)Google Scholar
  15. 15.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum. Inf. Process. 11(2), 455–463 (2012)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Cao, H.J., Zhang, J.F., Liu, J., Li, Z.Y.: A new quantum proxy multi-signature scheme using maximally entangled seven-qubit entangled seven-qubit states. Int. J. Theor. Phys. 55(2), 774–780 (2016)CrossRefzbMATHGoogle Scholar
  17. 17.
    Guo, W., Zhang, J.Z., Li, Y.P., et al.: Multi-proxy strong blind quantum signature scheme. Int. J. Theor. Phys. 55(8), 3524–3536 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Zhang, J.L., Zhang, J.Z., Xie, S.C.: Improvement of a quantum proxy blind signature scheme[J]. Int. J. Theor. Phys. 57(6), 1612–1621 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tian, J.H., Zhang, J.Z., Li, Y.P.: A quantum multi-proxy blind signature scheme based on genuine four-qubit entangled state. Int. J. Theor. Phys. pp. 809–816 (2015)Google Scholar
  20. 20.
    Cao, H.J., Wang, H.S., Li, P.F.: Quantum proxy multi-signature scheme using genuinely entangled six-qubits state. Int. J. Theor. Phys. 52(4), 1188–1193 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhu, H.P.: Quantum state sharing of an arbitrary single-Atom state by using a genuine six-atom entangled state in cavity QED. Int. J. Theor. Phys. 52(5), 1588–1592 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yuan, Y., Wang, F.Y.: Blockchain: the state of the art and future trends. Acta Automatica Sinica. 42(4), 481–494 (2016)Google Scholar
  23. 23.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Mayers, D.: Unconditional security in quantum cryptography. J. Assoc.: Comput. Math. 48(1), 351–406 (2001)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Inamon, H., Lutkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41(3), 599–627 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Deng, F.G., Long, G.L., et al.: Two-step quantum direct communication using the Einstein-podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 052319, 69 (2004)Google Scholar
  28. 28.
    Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Lett. 21, 601–603 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jia-Lei Zhang
    • 1
    Email author
  • Ming-Sheng Hu
    • 1
  • Zhi-Juan Jia
    • 1
  • Bei-Gong
    • 2
  • Li-Peng Wang
    • 1
  1. 1.College of Information Science and TechnologyZhengzhou Normal UniversityZhengzhouChina
  2. 2.College of Computer ScienceBeijing University of TechnologyBeijingChina

Personalised recommendations