Quantum Structures in Human Decision-Making: Towards Quantum Expected Utility

  • Sandro SozzoEmail author


Ellsberg thought experiments and empirical confirmation of Ellsberg preferences pose serious challenges to subjective expected utility theory (SEUT). We have recently elaborated a quantum-theoretic framework for human decisions under uncertainty which satisfactorily copes with the Ellsberg paradox and other puzzles of SEUT. We apply here the quantum-theoretic framework to the Ellsberg two-urn example, showing that the paradox can be explained by assuming a state change of the conceptual entity that is the object of the decision (decision-making, or DM, entity) and representing subjective probabilities by quantum probabilities. We also model the empirical data we collected in a DM test on human participants within the theoretic framework above. The obtained results are relevant, as they provide a line to model real life, e.g., financial and medical, decisions that show the same empirical patterns as the two-urn experiment.


Expected utility Ellsberg paradox Uncertainty Quantum structures Quantum probability 



The author is greatly indebted with Prof. Diederik Aerts and Dr. Massimiliano Sassoli de Bianchi for reading the manuscript and providing a number of valuable comments and suggestions for improvement.


  1. 1.
    Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik. translated as: Foundations of Probability. Chelsea Publishing Company, New York (1950) (1933)Google Scholar
  2. 2.
    Savage, L.: The Foundations of Statistics. Wiley, New York (1954). revised and enlarged edition: Dover Publications, New York (1972)zbMATHGoogle Scholar
  3. 3.
    Gilboa, I., Postlewaite, A., Schmeidler, D.: Probabilities in economic modeling. J. Econ. Perspect. 22, 173–188 (2008)CrossRefGoogle Scholar
  4. 4.
    Kahneman, D., Slovic, P., Tversky, A.: Judgment Under Uncertainty: Heuristics and Biases. Cambridge University Press, New York (1982)CrossRefGoogle Scholar
  5. 5.
    Kahneman, D., Tversky, A. (eds.): Choices, Values and Frames. Cambridge University Press, New York (2000)Google Scholar
  6. 6.
    Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  7. 7.
    Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314–348 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Aerts, D., Broekaert, J., Gabora, L., Sozzo, S.: Quantum structure and human thought. Behav. Brain Sci. 36, 274–276 (2013a)CrossRefGoogle Scholar
  9. 9.
    Aerts, D., Gabora, L., Sozzo, S.: Concepts and their dynamics: A quantum–theoretic modeling of human thought. Top. Cogn. Sci. 5, 737–772 (2013b)Google Scholar
  10. 10.
    Haven, E., Khrennikov, A.Y.: Quantum Social Science. Cambridge University Press, Cambridge (2013)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Q. J. Econ. 75, 643–669 (1961)CrossRefzbMATHGoogle Scholar
  12. 12.
    Machina, M.J., Siniscalchi, M.: Ambiguity and ambiguity aversion. In: Machina, M. J., Viscusi, K (eds.) Handbook of the Economics of Risk and Uncertainty, pp 729–807. Elsevier, New York (2014)Google Scholar
  13. 13.
    Aerts, D., Sassoli de Bianchi, M., Sozzo, S.: On the foundations of the Brussels operational-realistic approach to cognition. Front. Phys. 4. (2016)
  14. 14.
    Aerts, D., Sozzo, S., Tapia, J.: Identifying quantum structures in the Ellsberg paradox. Int. J. Theor. Phys. 53, 3666–3682 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Aerts, D., Sozzo, S.: From ambiguity aversion to a generalized expected utility. Modeling preferences in a quantum probabilistic framework. J. Math. Psychol. 74, 117–127 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Aerts, D., Haven, E., Sozzo, S.: A proposal to extend expected utility in a quantum probabilistic framework. Econ. Theory 65, 1079–1109 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Machina, M.J.: Risk, ambiguity, and the dark–dependence axioms. Am. Econ. Rev. 99, 385–392 (2009)CrossRefGoogle Scholar
  18. 18.
    Aerts, D., Geriente, S., Moreira, C., Sozzo, S.: Testing ambiguity and machina preferences within a quantum-theoretic framework for decision-making. J. Math. Econ. 78, 176–185. (2018)
  19. 19.
    Viscusi, W.K., Chesson, H.: Hopes and fears: the conflicting effects of risk ambiguity. J. Risk Uncertainty 47, 153–178 (1999)zbMATHGoogle Scholar
  20. 20.
    Ho, J., Keller, L.R., Keltyka, P.: Effects of outcome and probabilistic ambiguity on managerial choices. J. Risk Uncertainty 24, 47–74 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Dalla Chiara, M.L., Giuntini, R., Toraldo di Francia, G.: Holistic quantum computational semantics and gestalt-thinking. AIP Conf. Proc. 844, 86–100 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dalla Chiara, M.L., Giuntini, R., Leporini, R., Sergioli, G.: Holistic logical arguments in quantum computation. Mathematica Slovaca 66, 313–334 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Holik, F., Fortin, S., Bosyk, G., Plastino, A.: On the interpretation of probabilities in generalized probabilistic models. Lect. Not. Comp. Sci. 10106, 194–205 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Holik, F., Sergioli, G., Freytes, H., Plastino, A.: Pattern recognition in non-Kolmogorovian structures. Found. Sci. 23, 119–132 (2017)CrossRefzbMATHGoogle Scholar
  25. 25.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)zbMATHGoogle Scholar
  26. 26.
    Knight, F.H.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)Google Scholar
  27. 27.
    Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm. In: Acemoglu, D., Arellano, M., Dekel, E (eds.) Advances in Economics and Econometrics, Theory and Applications. Cambridge University Press, New York (2013)Google Scholar
  28. 28.
    Baillon, A., l’Haridon, O., Placido, L.: Ambiguity models and the machina paradoxes. Am. Econ. Rev. 101, 1547–1560 (2011)CrossRefGoogle Scholar
  29. 29.
    L’Haridon, O., Placido, L.: Betting on Machina’s reflection example: an experiment on ambiguity. Theor. Decis. 69, 375–393 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Business and IQSCSUniversity of LeicesterLeicesterUK

Personalised recommendations