Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1295–1302 | Cite as

Fermion’s Tunneling from a Kehagias-Sfetsos Spacetime Based on Generalized Uncertainty Principle

  • De-Jiang QiEmail author
  • Yi-Wen Han
Article
  • 57 Downloads

Abstract

In this paper, taking into account the effects of quantum-gravity, applying the modified Dirac equation in curved spacetime based on generalized uncertainty principle (GUP) close to Planck scale, we successfully investigate the quantum tunneling behavior and remnant from a Kehagias-Sfetsos spacetime and eventually obtain corrected tunneling rate and Hawking temperature. The result shows that the corrected Hawking tunneling temperature is related not only to the background of the Kehagias-Sfetsos spacetime and the energy of emitted particle, but also to the GUP parameter. We also discuss minimum radius and minimum non-zero mass by using the numerical method.

Keywords

Kehagias-Sfetsos spacetime Modified Dirac equation Tunneling Hawking temperature Remnant 

Notes

Acknowledgments

This work is supported in part by the Scientific and Technology Research Foundation of the Education Department of Liaoning Province, China (Grant No. L201609), Natural Science Foundation of Liaoning Province, China (Grant No. 20170540660), and Liaoning BaiQianWan Talents Program.

References

  1. 1.
    Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Parikh, M.K.: Int. J. Mod. Phys. D 13, 2351 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Zhang, J., Zhao, Z.: J. High Energy Phys. 0510, 1377 (2005)Google Scholar
  4. 4.
    Zhang, J.Y., Zhao, Z.: Nucl. Phys. B 725, 173 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Wu, S.Q., Jiang, Q.Q.: J. High Energy Phys. 0603, 079 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Zhang, J.Y., Zhao, Z.: Phys. Lett. B 618, 14 (2005)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Lin, K., Wang, A.: Phys. Rev. D 87, 084041 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 73, 064003 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Criscienzo, R., Di, Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G.: Phys. Lett. B 657, 107 (2007)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Nozari, K., Mehdipour, S.H.: Class. Quantum Grav. 25, 175015 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhao, R., Zhang, L.C.: Astrophys. Space Sci. 338, 295 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Li, H.L., Yang, S.Z.: Chin. Phys. B 18, 11 (2009)ADSGoogle Scholar
  14. 14.
    Zeng, X.X., Liu, W.B.: Eur. Phys. J. C 72, 1987 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Li, H.L.: Sci. China-Phys. Mech. Astron. 55, 2004 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Kerner, R., Mann, R.B.: Class. Quantum Grav. 25, 095014 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Zeng, X.X., Chen, Y.: Gen. Relativ. Gravit. 47, 47 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Gravit. 33, 2101 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Banerjee, R., Ghosh, S.: Phys. Lett. B 688, 224 (2010)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Kim, W., Son, E.J., Yoon, M.: J. High Energy Phys. 0801, 035 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Xiang, L., Wen, X.Q.: J. High Energy Phys. 0910, 046 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Nozari, K., Mehdipour, S.H.: Class. Quantum Grav. 25, 175015 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    Chen, D., Wu, H., Yang, H., Yang, S.: Int. J. Mod. Phys. A 29, 1430054 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Chen, D., Wu, H., Yang, H.: J. Cosmol. Astropart. Phys. 1403, 036 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Chen, D., Wu, H., Yang, H.: Adv. High Energy Phys. 2013, 432412 (2013)Google Scholar
  26. 26.
    Chen, D., Jiang, Q.Q., Wang, P., Yang, H.: J. High Energy Phys. 1311, 176 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Sakalli, I., Övgün, A., Jusufi, K.: Astrophys. Space Sci. 361, 330 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Li, H.L., Chen, S.R.: Gen. Relativ. Gravit. 49, 128 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    Li, H.L., Li, W., Han, Y.W.: Adv. High Energy Phys. 2018, 9247085 (2018)Google Scholar
  30. 30.
    Övgün, A., Jusufi, K.: Eur. Phys. J. Plus 131, 177 (2016)CrossRefGoogle Scholar
  31. 31.
    Li, H.L., Feng, Z.W., Yang, S.Z., Zu, X.T.: Eur. Phys. J. C 78, 768 (2018)ADSCrossRefGoogle Scholar
  32. 32.
    Myung, Y.S.: Phys. Lett. B 678, 127 (2009)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Liu, M., Lu, J.: Phys. Lett. B 699, 296 (2011)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kempf, A., Mangano, G., Mann, R.B.: Phys. Rev. D 52, 1108 (1995)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electric PowerShenyang Institute of EngineeringShenyangChina
  2. 2.School of Computer Science and Information EngineeringChongqing Technology and Business UniversityChongqingChina

Personalised recommendations