Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1282–1294 | Cite as

Circular Multi-Party Quantum Private Comparison with n-Level Single-Particle States

  • Ye Chong-Qiang
  • Ye Tian-YuEmail author
Article

Abstract

In this paper, a novel multi-party quantum private comparison (MQPC) protocol for equality comparison with n-level single-particle states is constructed, where the encoded particles are transmitted in a circular way. Here, n parties employ the qudit shifting operation to encode their private secrets and can compare the equality of their private secrets within one time execution of protocol. The proposed MQPC protocol can overcome both the outside attack and the participant attack. Specially, each party’s secret can be kept unknown to other parties and the third party (TP).

Keywords

Quantum cryptography Multi-party quantum private comparison (MQPC) Circular particle transmission n-level single-particle state 

PACS

03.67.Dd 03.67.Hk 03.67.Pp 

Notes

Acknowledgments

Funding by the Natural Science Foundation of Zhejiang Province (Grant No.LY18F020007) is gratefully acknowledged.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, pp. 175–179 (1984)Google Scholar
  2. 2.
    Ekert, A.K.: Quantum cryptography based on bells theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A. 78(2), 022321 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Zhang, C.M., Song, X.T., Treeviriyanupab, P., Li, M., Wang, C., Li, H.W., Yin, Z.Q., Chen, W., Han, Z.F.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)CrossRefGoogle Scholar
  8. 8.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin Phys B. 20(10), 100309 (2011)Google Scholar
  10. 10.
    Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A. 358(4), 256–258 (2006)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Chong, S.K., Hwang, T.: The enhancement of three-party simultaneous quantum secure direct communication scheme with EPR pairs. Opt. Commun. 284(1), 515–518 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A. 59(3), 1829–1834 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A. 59(1), 162–168 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A. 61(4), 042311 (2000)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A. 324(5), 420–424 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Deng, F.G., Long, G.L., Zhou, H.Y.: An efficient quantum secret sharing scheme with Einstein-Podolsky- Rosen pairs. Phys. Lett. A. 340(1–4), 43–50 (2005)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A. 82(6), 062315 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, p.160 (1982)Google Scholar
  20. 20.
    Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. 111(1–2), 23–36 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A. 56(2), 1154–1162 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12, 877–885 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, X.B., Su, Y., Niu, X.X., Yang, Y.X.: Efficient and feasible quantum private comparison of equality against the collective amplitude damping noise. Quantum Inf. Process. 13, 101–112 (2014)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Zi, W., Guo, F.Z., Luo, Y., Cao, S.H., Wen, Q.Y.: Quantum private comparison protocol with the random rotation. Int. J. Theor. Phys. 52, 3212–3219 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Li, J., Zhou, H.F., Jia, L., Zhang, T.T.: An efficient protocol for the private comparison of equal information based on four-particle entangled W state and bell entangled states swapping. Int. J. Theor. Phys. 53(7), 2167–2176 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, X.T., Zhang, B., Wang, J., Tang, C.J., Zhao, J.J.: Differential phase shift quantum private comparison. Quantum Inf. Process. 13, 71–84 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Sun, Z.W., Long, D.Y.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52, 212–218 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Lin, S., Guo, G.D., Liu, X.F.: Quantum private comparison of equality with χ-type entangled states. Int. J. Theor. Phys. 52, 4185–4194 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhang, W.W., Li, D., Li, Y.B.: Quantum private comparison protocol with W states. Int. J. Theor. Phys. 53(5), 1723–1729 (2014)CrossRefGoogle Scholar
  34. 34.
    Wang, C., Xu, G., Yang, Y.X.: Cryptanalysis and improvements for the quantum private comparison protocol using EPR pairs. Int J Quantum Inf. 11, 1350039 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ji, Z.X., Ye, T.Y.: Quantum private comparison of equal information based on highly entangled six-qubit genuine state. Commun. Theor. Phys. 65, 711–715 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12, 1077–1088 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d dimensional basis states without entanglement swapping. Int J Theor Phys. 53, 1085–1091 (2014)Google Scholar
  38. 38.
    Wang, Q.L., Sun, H.X., Huang, W.: Multi-party quantum private comparison protocol with n-level entangled states. Quantum Inf Process. 13, 2375–2389 (2014)Google Scholar
  39. 39.
    Ji, Z.X., Ye, T.Y.: Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states. Quantum Inf Process. 16(7), 177 (2017)Google Scholar
  40. 40.
    Luo, Q.B., Yang, G.W., She, K., Niu, W.N., Wang, Y.Q.: Multi-party quantum private comparison protocol based on d-dimensional entangled states. Quantum Inf Process. 13, 2343–2352 (2014)Google Scholar
  41. 41.
    Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison with an almost-dishonest third party. Quantum Inf Process. 14(11), 4225–4235 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf Process. 16(2), 36 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Ye, C.Q., Ye, T.Y.: Multi-party quantum private comparison of size relation with d-level single-particle states. Quantum Inf Process. 17(10), 252 (2018)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin Phys Lett. 22(5), 1049 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin Phys Lett. 23(11), 2896 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev. Lett. 85(2), 441 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin Phys Lett. 24(1), 19 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin Phys Lett. 30(4), 040305 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A 2006, 351(1–2):23–25Google Scholar
  50. 50.
    Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against Trojan horse attack. (2005), arXiv: quant-ph/0508168Google Scholar
  51. 51.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys Rev A. 74, 054302 (2006)ADSCrossRefGoogle Scholar
  52. 52.
    Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod Phys. 74(1), 145–195 (2002)ADSCrossRefzbMATHGoogle Scholar
  53. 53.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the Bradler-Dusek protocol. Quantum Inf Comput. 7, 329 (2007)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “quantum exam” [Phys Lett A 350(2006) 174]. Phys Lett A. 360(6), 748–750 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur Phys J D 56(3), 445–448 (2010)Google Scholar
  56. 56.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol. Phys Rev A. 76(6), 062324 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information & Electronic EngineeringZhejiang Gongshang UniversityHangzhouPeople’s Republic of China

Personalised recommendations