International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1262–1268 | Cite as

Formation of Information Entropy in Spinor Bose-Einstein Condensates

  • Qiang ZhaoEmail author
  • Hong Shen
  • Hongyan Liu


In this paper, we investigate the information entropy formation in a spinor (F = 1) Bose-Einstein condensates (BECs) by numerically solving the three-dimensional Gross-Pitaevskii equation (GPE). The effect of the spin-independent interaction \({c}_{0}^{\prime }\), spin-dependent interaction \({c}_{2}^{\prime }\) and external magnetic field Bext is discussed. We reveal that the position component Sr and total entropy S increase and the momentum component Sk decreases with increasing the \({c}_{0}^{\prime }\) or Bext. Moreover, the order parameter δ decreases with increasing \({c}_{0}^{\prime }\) or Bext, implying that the system becomes a more disordered state. However, for the side of \({c}_{2}^{\prime }\), we find that the information entropy keep almost constant irrespective of \({c}_{2}^{\prime }\), and the extent of disorder is also invariability.


Information entropy Spinor Bose-Einstein condensates 



The authors would like to thank Pan Hu for useful discussions. Q. Z. is supported by the Applied Basic Research Programs of Tangshan (Grant No. 18130219a). H. Y. L is supported by the Natural Science Foundation of Shandong province (Grant No. ZR2017MEM012).


  1. 1.
    Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E.A.: Phys. Rev. Lett. 83, 2498 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Kasamatsu, K., Tsubota, M., Ueda, M.: Int. J. Mod. Phys. B 19, 1835 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Lin, Y.J., Jiménez-García, K., Spielman, I.B.: Nature 471, 83 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Galitski, V., Spielman, I.B.: Nature 494, 49 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Eiermann, B., Anker, T., Albiez, M., Taglieber, M., Treutlein, P., Marzlin, K.P., Oberthaler, M.K.: Phys. Rev. Lett. 92, 230401 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Strecker, K.E., Partridge, G.B., Truscott, A.G., Hulet, R.G.: New J. Phys. 5, 73 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Burger, S., Bongs, K., Dettmer, S., Ertmer, W., Sengstock, K., Sanpera, A., Shlyapnikov, G.V., Lewenstein, M.: Phys. Rev. Lett. 83, 5198 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Frantzeskakis, D.J.: J. Phys. A 43, 213001 (2010)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Bongs, K., Sengstock, K.: Rep. Prog. Phys. 67, 907 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Minguzzi, A., Succi, S., Toschi, F., Tosi, M.P., Vignolo, P.: Phys. Rep. 395, 223 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Bialynicki-Birula, I., Mycielski, J.: Commun. Math. Phys. 44, 129 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    Gadre, S.R.: Phys. Rev. A 30, 620 (1984)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Ohya, M., Petz, P.: Quantum Entropy and its Use. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Sokolov, V.V., Brown, B.A., Zelevinsky, V.: Phys. Rev. E 58, 56 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Nagy, A., Parr, R.G.: Int. J. Quantum Chem. 58, 323 (1996)CrossRefGoogle Scholar
  16. 16.
    Panos, C.P., Massen, S.E.: Int. J. Mod. Phys. E 6, 497 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Zelevinsky, V., Horoi, M., Brown, B.A.: Phys. Lett. B 350, 141 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    Landsberg, P.T.: Phys. Lett. A 102, 171 (1984)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Sriraman, T., Chakrabarti, B., Trombettoni, A., Muruganandam, P.: J. Chem. Phys. 147, 044304 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Svidzinsky, A., Kim, M., Agarwal, G., Scully, M.O.: New J. Phys. 20, 013002 (2018)ADSCrossRefGoogle Scholar
  21. 21.
    Lovas, I., Fortágh, J., Demler, E., Zaránd, G.: Phys. Rev. A 96, 023615 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Dey, K.K., Das, S., Sekh, G.A.: arXiv:1710.05632
  23. 23.
    Ho, T.L.: Phys. Rev. Lett. 81, 742 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Ohmi, T., Machida, K.: J. Phys. Soc. Jpn. 67, 1822 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    van Kempen, E.G.M., Kokkelmans, S.J.J.M.F., Heinzen, D.J., Verhaar, B.J.: Phys. Rev. Lett. 88, 093201 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Massen, S.E., Moustakidis, C.C., Panos, C.P.: Phys. Lett. A 299, 131–136 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Bao, W.Z., Chern, I.L., Zhang, Y.Z.: J. Comput. Phys. 253, 189 (2013)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Chin, C., Grimm, R., Julienne, P., Tiesinga, E.: Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Świsłocki, T., Brewczyk, M., Gajda, M., RząŻewski, K.: Phys. Rev. A 81, 033604 (2010). CrossRefGoogle Scholar
  30. 30.
    Li, T.T., Yi, S., Zhang, Y.B.: Phys. Rev. A 92, 063603 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Li, T.T., Yi, S., Zhang, Y.B.: Phys. Rev. A 93, 053602 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Xu, L.L., Liu, Y.K., Feng, S.P., Yang, S.J.: Phys. Lett. A 380, 2242 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorth China University of Science and TechnologyTangshanChina
  2. 2.Department of Modern Technology and Education CenterNorth China University of Science and TechnologyTangshanChina
  3. 3.School of Physics and Electronic EngineeringHeze UniversityHezeChina

Personalised recommendations