Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1249–1261 | Cite as

A New Quantum Secret Sharing Scheme Based on Mutually Unbiased Bases

  • Na Hao
  • Zhi-Hui LiEmail author
  • Hai-Yan Bai
  • Chen-Ming Bai
Article

Abstract

In this paper, we put forward a new secret sharing scheme. First, we give the mutually unbiased bases on the p2-dimensional quantum system where p is an odd prime number, and then we construct the corresponding unitary transformation based on the properties of these mutually unbiased bases. Second, we construct a (N, N) threshold secret sharing scheme by using unitary transformation between these mutually unbiased bases. At last, we analyze the scheme’s security by several ways, for example, intercept-and-resend attack, entangle-and-measure attack, trojan horse attack, and so on. Using our method, we construct a single-particle quantum protocol involving only one qudit, and the method shows much more scalability than other schemes.

Keywords

Quantum secret sharing Mutually unbiased bases Unitary matrix 

Notes

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China under Grant No.61373150 and No.61602291, and supported by “the Fundamental Research Funds for the Central Universities” under Grant No.GK201603087.

References

  1. 1.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bai, C.M., Li, Z.H., Liu, C.J., Li, Y.M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quant. Inf. Process 16, 304 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wang, J.T., Li, L.X., Peng, H.P., Yang, Y.X.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the d-dimensional GHZ state. Quant. Inf. Process 16, 59 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Qin, H.W., Dai, Y.W.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional Bell state. Inf. Process. Lett. 116, 351–355 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55, 4972–4986 (2016)CrossRefzbMATHGoogle Scholar
  7. 7.
    Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Huang, D.Z., Chen, Z.G., Guo, Y.: Multiparty quantum secret sharing using quantum fourier transform. Commun. Theor. Phys. (Beijing, China) 51(2), 221–226 (2009)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78, 012344 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Anderson, C.A.N., Joern, M.Q., Hideki, I.: Improving quantum secret-sharing schemes. Phys. Rev. A 64, 042311 (2001)CrossRefGoogle Scholar
  12. 12.
    Calderbank, A.R., Cameron, P.J., Kantor, W.M., Seidel, J.J.: z 4-kerdock Codes, Orthogonal sperads, and extremal euclidean line-sets. Proc. London Math. Soc. 75, 436–480 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363–381 (1989)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, L., Yu, L.: Product states and Schmidt rank of mutually unbiased bases in dimension six. J. Phys. A: Math. Theor. 50, 475304 (2017)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ghiu, I.: Generation of all sets of mutually unbiased bases for three-qubit systems. Phys. Scr. T153, 014027 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Wiesniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New J. Phys. 13, 053047 (2011)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Klimov, A.B., Romero, J.L., Bjork, G., Sanchez-Soto, L.L.: Geometrical approach to mutually unbiased bases. J. Phys. A: Math. Theor. 40, 3987–3998 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lawrence, J., Brukner, C., Zeilinger, A.: Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 65, 032320 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92, 030302(R) (2015)ADSCrossRefGoogle Scholar
  20. 20.
    He, G.P., Wang, Z.D.: Single qubit quantum secret sharing with improved security. Quantum Inf. Comput. 10(1–2), 28–40 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations