Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1227–1236 | Cite as

Controlled Entanglement Diversion Using GHZ Type Entangled Coherent State

  • Ranjana Prakash
  • Ravi Kamal PandeyEmail author
  • Hari Prakash
Article

Abstract

We propose a scheme of controlled entanglement diversion of a bi-partite entangled coherent state using GHZ type entangled coherent state as a resource. The scheme involves only linear optical devices such as phase shifters, beam splitters and photon counters. Average fidelity of diversion is calculated and plotted. It is 2/3 for very small coherent amplitudes and approaches unity for appreciable coherent amplitude.

Keywords

Entanglement diversion Coherent states Entangled states 

Notes

Acknowledgements

One of the authors R.K. Pandey is thankful to UGC for providing financial assistance under UGC - D.Phil. fellowship. Discussions with Dr. Devendra Kumar Mishra and Ms. Shamiya Javed is gratefully acknowledged.

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62 (1), 012313 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “event-ready-detectors” bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)ADSCrossRefzbMATHGoogle Scholar
  8. 8.
    Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, Y.H., Kulik, S.P., Shih, Y.: Quantum teleportation of a polarization state with a complete bell state measurement. Phys. Rev. Lett. 86(7), 1370 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Prakash, H., Verma, V.: Quantum teleportation of single qubit mixed information state with werner-like state as resource. arXiv:1305.4259 (2013)
  11. 11.
    Prakash, H., Maurya, A.K.: Quantum teleportation using entangled 3-qubit states and the magic bases. Opt. Commun. 284(20), 5024–5030 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Verma, V., Prakash, H.: Standard quantum teleportation and controlled quantum teleportation of an arbitrary n-qubit information state. Int. J. Theor. Phys. 55(4), 2061–2070 (2016)CrossRefzbMATHGoogle Scholar
  13. 13.
    Sisodia, M., Verma, V., Thapliyal, K., Pathak, A.: Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf. Process 16 (3), 76 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hirota, O., Van Enk, S.J., Nakamura, K., Sohma, M., Kato, K.: Entangled nonorthogonal states and their decoherence properties. arXiv:quant-ph/0101096 (2001)
  15. 15.
    Vaidman, L.: Teleportation of quantum states. Phys. Rev. A 49(2), 1473 (1994)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Furusawa, A., Sørensen, J.L., Braunstein, S.L., Fuchs, C.A., Kimble, H.J., Polzik, E.S.: Unconditional quantum teleportation. Science 282(5389), 706–709 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45(9), 6811 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64(2), 022313 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64 (2), 022302 (2001)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Prakash, H., Chandra, N., Prakash, R., et al.: Improving the teleportation of entangled coherent states. Phys. Rev. A 75(4), 044305 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Prakash, H., Chandra, N., Prakash, R., Shivani: Almost perfect teleportation using 4-partite entangled states. Int. J. Mod. Phys. B 24(17), 3383–3394 (2010)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Prakash, H., Mishra, M.: Increase in average fidelity of quantum teleportation by decreasing entanglement. Proceedings of ICOP-2009, CSIO Chandigarh, India. Online available: http://csio. res. in 8085
  23. 23.
    Mishra, M.K., Prakash, H.: Teleportation of a two-mode entangled coherent state encoded with two-qubit information. J. Phys. B: At., Mol. Opt. Phys. 43(18), 185501 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Prakash, H., Chandra, N., Prakash, R., Shivani: Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B 23(08), 2083–2092 (2009)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Prakash, H.: Quantum teleportation. In: International Conference on Emerging Trends in Electronic and Photonic Devices & Systems, 2009. ELECTRO’09, pp 18–23. IEEE (2009)Google Scholar
  26. 26.
    Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Entanglement diversion between two pairs of entangled coherent states: fidelity and decoherence. Int. J. Mod. Phys. B 23(04), 585–595 (2009)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Improving the entanglement diversion between two pairs of entangled coherent states. Int. J. Mod. Phys. B 24(17), 3331–3339 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    An, N.B., Kim, J.: Cluster-type entangled coherent states: generation and application. Phys. Rev. A 80(4), 042316 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Sun, Y., Sun, B.J., Shi, M.L., Man, Z.X., Xia, Y.J.: Improving the teleportation of tripartite entangled coherent states in continuous variable. International Journal of Quantum Information 7(01), 313–321 (2009)CrossRefzbMATHGoogle Scholar
  30. 30.
    Yong, S., Zhong-Xiao, M., Yun-Jie, X.: Continuous-variable quantum teleportation of entangled coherent states. Chin. Phys. Lett. 26(2), 020306 (2009)CrossRefGoogle Scholar
  31. 31.
    Liu, J.C., Li, Y.H., Nie, Y.Y.: Controlled teleportation of an ecs by using a four-mode ctecs. Int. J. Theor. Phys. 50(6), 1852–1857 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80 (18), 3891 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bose, S., Vedral, V., Knight, P.L.: Multiparticle generalization of entanglement swapping. Phys. Rev. A 57(2), 822 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Polkinghorne, R., Ralph, T.: Continuous variable entanglement swapping. Phys. Rev. Lett. 83(11), 2095 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Parker, S., Bose, S., Plenio, M.: Entanglement quantification and purification in continuous-variable systems. Phys. Rev. A 61(3), 032305 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Jia, X., Su, X., Pan, Q., Gao, J., Xie, C., Peng, K.: Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett. 93(25), 250503 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    Takei, N., Yonezawa, H., Aoki, T., Furusawa, A.: High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett. 94(22 ), 220502 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    Brask, J.B., Rigas, I., Polzik, E.S., Andersen, U.L., Sørensen, A.S.: Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105(16), 160501 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    Takeda, S., Fuwa, M., van Loock, P., Furusawa, A.: Entanglement swapping between discrete and continuous variables. Phys. Rev. Lett. 114(10), 100501 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Duan, L.M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413 (2001)ADSCrossRefGoogle Scholar
  41. 41.
    Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81(26), 5932 (1998)ADSCrossRefGoogle Scholar
  42. 42.
    Sangouard, N., Simon, C., Gisin, N., Laurat, J., Tualle-Brouri, R., Grangier, P.: Quantum repeaters with entangled coherent states. JOSA B 27(6), A137–A145 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83(1), 33 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Bose, S., Vedral, V., Knight, P.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60(1), 194 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    Sun, Q.C., Jiang, Y.F., Mao, Y.L., You, L.X., Zhang, W., Zhang, W.J., Jiang, X., Chen, T.Y., Li, H., Huang, Y.D., et al.: Entanglement swapping over 100 km optical fiber with independent entangled photon-pair sources. Optica 4 (10), 1214–1218 (2017)CrossRefGoogle Scholar
  46. 46.
    Xin-Hua, C., Jie-Rong, G., Jian-Jun, N., Jin-Ping, J.: Entanglement diversion and quantum teleportation of entangled coherent states. Chin. Phys. 15(3), 488 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Dao-Hua, W., Ping, D., Ming, Y., Zhuo-Liang, C.: Controlled entanglement swapping for continuous variables. Commun. Theor. Phys. 49(4), 877 (2008)ADSCrossRefzbMATHGoogle Scholar
  48. 48.
    Jeong, H., An, N.B.: Greenberger-Horne-Zeilinger–type and w-type entangled coherent states: generation and bell-type inequality tests without photon counting. Phys. Rev. A 74(2), 022104 (2006)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Dodonov, V., Malkin, I., Man’Ko, V.: Even and odd coherent states and excitations of a singular oscillator. Physica 72(3), 597–615 (1974)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentUniversity of AllahabadAllahabadIndia

Personalised recommendations