Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1172–1194 | Cite as

Noise Effects and Perfect Controlled Remote State Preparation

  • Yuan-hua LiEmail author
  • Zi-sheng Wang
  • Hua-qing Zhou
  • Hai-mei Luo
  • Ming-huang Sang
  • Yi-you Nie
Article
  • 67 Downloads

Abstract

We investigate how the efficiency is affected on the noise environments in the controlled remote state preparation protocol, where the several realistic scenarios, i.e., a part or all of the qubits are subjected to the same or different types of noise, are considered. We find that more noise or less entanglement of qubits environment lead to more efficiency in terms of average fidelity. We show that it is better way to subject the qubits in different noise channels in order to increase the fidelity of the controlled remote state preparation protocol. By using a non-maximally three-qubit pure entangled state as quantum channel, furthermore, we could realize a perfect controlled remote state preparation by choosing the right noisy environments and adjusting their relations in terms of noisy rates.

Keywords

Environment Controlled remote state preparation Entanglement Efficiency 

PACS

03.67.Hk 03.67.Bg 03.65.Ud 05.40.Fb 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11764021, 11564018, 61765008, 11804133, 51567011), and the Research Foundation of the Education Department of Jiangxi Province (No. GJJ150339).

References

  1. 1.
    Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)CrossRefzbMATHGoogle Scholar
  3. 3.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Ber, R., Kenneth, O., Reznik, B.: Superoscillations underlying remote state preparation for relativistic fields. Phys. Rev. A. 91, 052312 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dakic, B., Lipp, Y.O., Ma, X.S., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)CrossRefGoogle Scholar
  7. 7.
    Giorgi, G.L.: Quantum discord and remote state preparation. Phys. Rev. A. 88, 022315 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A. 63, 014302 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A. 69, 022310 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Paris, M.G.A., Cola, M.M., Bonifacio, R.: Remote state preparation and teleportation in phase space. J. Opt. B. 5, 360–364 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A. 68(062319), (2003)Google Scholar
  15. 15.
    Spee, C., de Vicente, J.I., Kraus, B.: Remote entanglement preparation. Phys. Rev. A 88, 010305(R) (2013)Google Scholar
  16. 16.
    Xu, Z.Y., Liu, C., Luo, S.L., Zhu, S.Q.: Non-Markovian effect on remote state preparation. Ann. Phys. 356, 29–36 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A. 306, 271–276 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A. 72(012315), (2005)Google Scholar
  20. 20.
    Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A. 76, 022308 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A. 81, 042301 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Radmark, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multilocation remote state preparation. Phys. Rev. A. 88, 032304 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Zavatta, A., D’Angelo, M., Parigi, V., Bellini, M.: Remote preparation of arbitrary time-encoded single-photon ebits. Phys. Rev. Lett. 96, 020502 (2006)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B Atomic Mol. Phys. 40, 3719–3724 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B Atomic Mol. Phys. 41, 095501 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585–4592 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, Y.S., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process. 13, 1979–2005 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235–240 (2009)ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Chen, N., Quan, D.X., Yang, H., Pei, C.X.: Deterministic controlled remote state preparation using partially entangled quantum channel. Quantum Inf. Process. 15, 1719–1729 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Chen, X.B., Ma, S.Y., Yuan, S.Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639–1650 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077–1089 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A. 378, 3582–3585 (2014)ADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223–3237 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wang, Z.S., Wu, C.F., Feng, X.L., Kwek, L.C., Lai, C.H.: Oh, C.H.: effects of a squeezed-vacuum reservoir on geometric phase. Phys. Rev. A. 75, 024102 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Li, C.F., Tang, J.S., Li, Y.L., Guo, G.C.: Experimentally witnessing the initial correlation between an open quantum system and its environment. Phys. Rev. A. 83, 064102 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931–934 (2011)CrossRefGoogle Scholar
  42. 42.
    Liang, H.Q., Liu, J.M., Feng, S.S., Chen, J.G., Xu, X.Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857–3877 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Taketani, B.G., deMelo, F., deMatos Filho, R.L.: Optimal teleportation with a noisy source. Phys. Rev. A 85, 020301(R) (2012)Google Scholar
  44. 44.
    Bandyopadhyay, S., Ghosh, A.: Optimal fidelity for a quantum channel may be attained by nonmaximally entangled states. Phys. Rev. A 86, 020304(R) (2012)Google Scholar
  45. 45.
    Knoll, L.T., Schmiegelow, C.T., Larotonda, M.A.: Noisy quantum teleportation: An experimental study on the influence of local environments. Phys. Rev. A. 90, 042332 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Fortes, R., Rigolin, G.: Fighting noise with noise in realistic quantum teleportation. Phys. Rev. A. 92, 012338 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    Xu, X.M., Cheng, L.Y., Liu, A.P., Su, S.L., Wang, H.F., Zhang, S.: Environment-assisted entanglement restoration and improvement of the fidelity for quantum teleportation. Quantum Inf. Process. 14, 4147–4162 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Uhlmann, A.: The “transition probability” in the state space of a*-algebra. Rep. Math. Phys. 9, 273–279 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuan-hua Li
    • 1
    • 2
    Email author
  • Zi-sheng Wang
    • 1
    • 2
  • Hua-qing Zhou
    • 1
    • 2
  • Hai-mei Luo
    • 1
    • 2
  • Ming-huang Sang
    • 1
    • 2
  • Yi-you Nie
    • 1
    • 2
  1. 1.Department of physicsJiangxi Normal UniversityNanchangChina
  2. 2.Key Laboratory of Optoelectronic and Telecommunication of Jiangxi provinceNanchangChina

Personalised recommendations