Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1161–1171 | Cite as

Computing the Maximal Violation of Bell Inequalities for Multipartite Qubit via Partially Symmetric Tensor

  • Lei LiEmail author
  • Yan-nan Chen
  • Ming Li
  • Qing-wen Wang
  • Li-qun Qi
Article

Abstract

It is desirable to evaluate the maximal violation of Bell inequalities as the violation of constraints indicates the quantum effect of correlation in composite quantum system. In this paper, we propose a new approach to compute the maximal violation of Bell inequalities for multipartite qubit via partially symmetric tensor. For a class of well known Bell inequalities, we find that their maximal violation values derived by partially symmetric tensors cover the previous results as a special case. This sheds new light on the applications of tensor in the quantum multipartite system.

Keywords

Bell inequalities Maximal violation Partially symmetric tensor 

Notes

Acknowledgments

This research was supported by the Fundamental Research Funds for the Central Universities No. 18CX02023A, the grants from the NSFC (11171205, 11571178, 11771405), the Key Project of Scientific Research Innovation Foundation of Shanghai Municipal Education Commission(13ZZ080).

References

  1. 1.
    Bell, J.S.: Physics 1, 195 (1964)CrossRefGoogle Scholar
  2. 2.
    Fei, S.M., Wang, Z.X., Zhao, H.: Phys. Lett. A 329, 414 (2004)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Seevinck, M., Svetlichny, G.: Phys. Rev. Lett. 89, 060401 (2002)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhao, H.: Phys. Lett. A 373, 3924 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Brukner, Č., żukowski, M., Zeilinger, A.: Phys. Rev. Lett. 89, 197901 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Scarani, V., Gisin, N.: Phys. Rev. Lett. 87, 117901 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Acín, A., Gisin, N., Scarani, V.: Quantum Inf. Comput. 3, 563 (2003)MathSciNetGoogle Scholar
  8. 8.
    Clauser, J., Horne, M., Shimony, A., Holt, R.: Phys. Rev. Lett. 23, 880 (1969)ADSCrossRefGoogle Scholar
  9. 9.
    Mermin, N.D.: Phys. Rev. Lett. 65, 1838 (1990)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Roy, S.M., Singh, V.: Phys. Rev. Lett. 67, 2761 (1991)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Ardehali, M.: Phys. Rev. A 46, 5375 (1992)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Belinskii, A.V., Klyshko, D.N.: Phys. Usp. 36, 653 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    Gisin, N., Bechmann-Pasquinucci, H.: Phys. Lett. A 246, 1 (1998)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Werner, R.F., Wolf, M.M.: Phys. Rev. A 64, 032112 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    żukowski, M., Brukner, Č.: Phys. Rev. Lett. 88, 210401 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Phys. Rev. Lett. 88, 170405 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Svetlichny, G.: Phys. Rev. D 35, 3066 (1987)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, M., Fei, S.M.: Phys. Rev. A 86, 052119 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Ajoy, A., Rungta, P.: arXiv:0901.0368 [quant-ph] (2009)
  20. 20.
    Horodecki, R., Horodecki, P., Horodecki, M.: Phys. Lett. A 200, 340 (1995)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Chang, P.Y., Chuan, S.K., Ma, C.T.: J High Energy Phys. 9, 100 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Kolda, T.G., Bader, B.W.: SIAM Rev. 51, 455 (2009)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Comon, P.: Special Issue Higher Order Stat. 36, 287–314 (1994)Google Scholar
  24. 24.
    Muti, D., Bourennane, S.: Signal Process. 85, 2338–2353 (2005)CrossRefGoogle Scholar
  25. 25.
    Farias, R.C., Comon, P., Redon, R.: IEEE International Workshop on Machine Learning for Signal Processing (2014)Google Scholar
  26. 26.
    Kolda, T.G., Sun, J.: Eighth IEEE International Conference on Data Mining, 363–372 (2009)Google Scholar
  27. 27.
    Qi, L., Wang, Y., Wu, E.X.: J. Comput. Appl. Math. 221, 150–157 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Tucker, L.R.: Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966)Google Scholar
  29. 29.
    Qi, L.: J. Symbolic Comput. 40, 1302–1324 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lim, L.-H.: Proceeding of the IEEE International Workshop on Computational Advances in Multi- Sensor Adaptive Processing (2005)Google Scholar
  31. 31.
    Kolda, T.G., Mayo, J.R.: SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wei, T.C., Goldbart, P.M.: Phys. Rev. A 68, 042307 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: J. Math. Phys. 50, 122104 (2009)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Bohnet-waldraff, F., Braun, D., Giraud, O.: Phys. Rev. A 94, 042324 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Hu, S., Qi, L., Zhang, G.: Phys. Rev. A 93, 012304 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Sun, B.Z., Fei, S.M.: Phys. Rev. A 74, 032335 (2006)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Chen, K., Albeverio, S., Fei, S.M.: Phys. Rev. A 74(R), 050101 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Han, D., Dai, H. H., Qi, L.: J. Elast. 97, 1–13 (2009)CrossRefGoogle Scholar
  39. 39.
    Huang, Z., Qi, L.: J. Comput. Appl. Math. 338, 22–43 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Wang, Y., Qi, L., Zhang, X.: Numer. Linear algebra Appl. 16, 589–601 (2009)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Wang, Y., Aron, M.: J. Elast. 44, 89–96 (1996)CrossRefGoogle Scholar
  42. 42.
    Linden, N., Popescu, S., Sudbery, A.: Phys. Rev. Lett. 83, 243 (1999)ADSCrossRefGoogle Scholar
  43. 43.
    Mitchell, P., Popescu, S., Roberts, D.: Phys. Rev. A 70(R), 060101 (2012)Google Scholar
  44. 44.
    Kolda, T.G.: SIAM J. Matrix Anal. Appl. 24, 762–767 (2003)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of ScienceChina University of PetroleumQingdaoPeople’s Republic of China
  2. 2.College of ScienceShanghai UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityKowloonHong Kong

Personalised recommendations