International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1138–1149 | Cite as

A Conditional Generative Model Based on Quantum Circuit and Classical Optimization

  • Zhimin He
  • Lvzhou Li
  • Shenggen Zheng
  • Zhiming Huang
  • Haozhen SituEmail author


Generative model is an important branch of unsupervised learning techniques in machine learning. Current research shows that quantum circuits can be used to implement simple generative models. In this paper, we train a quantum conditional generator, which can generate different probability distributions according to different input labels, i.e., different initial quantum states. The model is evaluated with different datasets including chessboard images, and bars and stripes (BAS) images of 2 × 2 and 3 × 3 pixels. We also improve the performance of the model by introducing a controlled-NOT (CNOT) layer. The simulation results show that the CNOT layer can improve the performance, especially for the generative model with chain-connected entangling layers.


Quantum generative model Conditional generator Quantum machine learning 



We are very grateful to the reviewers and the editors for their invaluable comments and detailed suggestions that helped to improve the quality of the present paper. This work is supported by the National Natural Science Foundation of China (Nos. 61802061, 61772565, 61602532), the Natural Science Foundation of Guangdong Province of China (No. 2017A030313378), the Project of Department of Education of Guangdong Province (No. 2017KQNCX216), the Research Foundation for Talented Scholars of Foshan University (No. gg040996), the Science and Technology Program of Guangzhou City of China (No. 201707010194) and the Fundamental Research Funds for the Central Universities (No. 17lgzd29).


  1. 1.
    Ackley, D.H., Hinton, G.E., Sejnowski, T.J.: A learning algorithm for Boltzmann machines. In: Readings in Computer Vision, pp. 522–533. Elsevier (1987)Google Scholar
  2. 2.
    Eddy, S.R.: Hidden markov models. Curr. Opin. Struct. Biol. 6, 361 (1996)CrossRefGoogle Scholar
  3. 3.
    Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)
  4. 4.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)Google Scholar
  5. 5.
    Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)
  6. 6.
    Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    Chatterjee, R., Yu, T.: Generalized coherent states, reproducing kernels, and quantum support vector machines. Quant. Inf. Comput. 17, 1292 (2017)MathSciNetGoogle Scholar
  8. 8.
    Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Narayanan, A., Menneer, T.: Quantum artificial neural network architectures and components. Inform. Sci. 128, 231–255 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, J., Wang, L., Charbon, E.: A quantum-implementable neural network model. Quant. Inf. Process. 16, 245 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lu, S., Braunstein, S.L.: Quantum decision tree classifier. Quant. Inf. Process. 13, 757 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Adachi, S.H., Henderson, M.P.: Application of quantum annealing to training of deep neural networks. arXiv:1510.06356 (2015)
  13. 13.
    Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. arXiv:1412.3489 (2014)
  14. 14.
    Duan, B.J., Yuan, J.B., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96, 032301 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Dong, D.Y., Chen, C.L., Li, H.X., Tarn, T.J.: Quantum reinforcement learning. IEEE T. Cybern. 38, 1207 (2008)Google Scholar
  16. 16.
    Lamata, L.: Basic protocols in quantum reinforcement learning with superconducting circuits. Sci. REP-UK 7, 1609 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    He, Z.M., Li, L.Z., Huang, Z.M., Situ, H.Z.: Quantum-enhanced feature selection with forward selection and backward elimination. Quant. Inf. Process. 17, 154 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yu, C.H., Gao, F., Wang, Q.L., Wen, Q.Y.: Quantum algorithm for association rules mining. Phys. Rev. A 94, 042311 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Kieferová, M., Wiebe, N.: Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A 96, 062327 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    Wittek, P., Gogolin, C.: Quantum enhanced inference in Markov logic networks. Sci. REP-UK 7, 45672 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Benedetti, M., Realpe-Gómez, J., Biswas, R., Perdomo-Ortiz, A.: Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning. Phys. Rev. A 94, 022308 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8, 021050 (2018)Google Scholar
  23. 23.
    Benedetti, M., Realpe-Gómez, J., Perdomo-Ortiz, A.: Quantum-assisted Helmholtz machines: A quantum-classical deep learning framework for industrial datasets in near-term devices. Quant. Sci. Technol. 3, 034007 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quant. Sci. Technol. 2, 045001 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    Lamata, L., Alvarez-Rodriguez, U., Martłn-Guerrero, J.D., Sanz, M., Solano, E.: Quantum autoencoders via quantum adders with genetic algorithms. Quant.Sci. Technol. 4, 014007 (2019)ADSCrossRefGoogle Scholar
  26. 26.
    Han, Z.Y., Wang, J., Fan, H., Wang, L., Zhang, P.: Unsupervised generative modeling using matrix product states. Phys. Rev. X 8, 031012 (2018)Google Scholar
  27. 27.
    Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121, 040502 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Gao, X., Zhang, Z.Y., Duan, L.M.: An efficient quantum algorithm for generative machine learning. arXiv:1711.02038 (2017)
  29. 29.
    Benedetti, M., Garcia-Pintos, D., Nam, Y.S., Perdomo-Ortiz, A.: Generative modeling approach for benchmarking and training shallow quantum circuits. arXiv:1801.07686 (2018)
  30. 30.
    Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv:1411.4028 (2014)
  31. 31.
    Hadfield, S., Wang, Z.H., O’Gorman, B., Rieffel, E.G., Venturelli, D., Biswas, R.: From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. arXiv:1709.03489 (2017)
  32. 32.
    Otterbach, J.S., Manenti, R., Alidoust, N., et al.: Unsupervised machine learning on a hybrid quantum computer. arXiv:1712.05771 (2017)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringFoshan UniversityFoshanChina
  2. 2.School of Data and Computer ScienceSun Yat-Sen UniversityGuangzhouChina
  3. 3.Pengcheng LaboratoryShenzhenChina
  4. 4.Institute for Quantum Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  5. 5.School of Economics and ManagementWuyi UniversityJiangmenChina
  6. 6.College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations