International Journal of Theoretical Physics

, Volume 58, Issue 4, pp 1117–1127 | Cite as

Regulation of Optimal Entropy Squeezing Sudden Generation for a Moving Atomic Qubit Interacting with the Coherent Fields via Two-Photon Process

  • Xiao-Juan LiuEmail author
  • Zhao-Hui Peng
  • Chun-Xia Jia
  • Bing-Ju Zhou


From the quantum information point of view, we investigate the regulation of optimal entropy squeezing sudden generation (OESSG) and disappearance (OESSD) for a moving atomic qubit interacting with the coherent field via two-photon process. It is shown that physical substance of atomic OESSG is entanglement sudden death of the atomic qubit and field, and atomic OESSD corresponds to the transient entanglement resurrection of atomic qubit and field. The duration, number component and stable cycle of the atomic OESSG can be controlled by choosing the initial atomic distribution angle 𝜗 and structure parameter p of the field mode, respectively. We realize the periodic exchange of atomic OESSG of components Sx and Sy, and also propose the exchange preparation scheme of atomic optimal entropy squeezing state. Our proposal may be useful for instantaneous control of quantum noise and retention of maximum coherent states of single atomic qubit in the noisy environment.


Optimal entropy squeezing sudden generation Moving atomic qubit Field mode structure parameter Optimal entropy squeezing state 



This work was supported by the National Science Foundation of China (NSFC) under Grants No. 11405052 and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control under Grants No. QSQC1409.


  1. 1.
    Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nat. (London) 404, 247–255 (2000)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Meier, F., Levy, J., Lossl, D.: Quantum computing with spin cluster qubits. Phys. Rev. Lett. 90, 047901 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Wu, C.F.: Quantum teleportation between the photon bits and atoms bits first is completed in China. Front. Sci. 2, 92 (2008)Google Scholar
  4. 4.
    Long, G.L., Li, Y.S., Zhang, W.L.: Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A 61, 042305 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Wineland, D.J., Bollinger, J.J., Itano, W.M., Heinzen, D.J.: Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Sorensen, J.L., Hald, J., Polzik, E.S.: Quantum noise of an atomic spin polarization measurement. Phys. Rev. Lett. 80, 3487–3490 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Aty, M.A., Abdalla, M.S., Obada, A.S.F.: Entropy squeezing of a two-mode multiphoton Jaynes-Cummings model in the presence of a nonlinear medium. J. Opt. B: Quantum Semiclass 4, 134–142 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Mao, J.M., Jiao, Z.Y., Li, N.: Spin squeezing of the two Two-Level atoms interacting with a binomial field. Int. J. Theor. Phys. 47, 1270–1277 (2008)CrossRefzbMATHGoogle Scholar
  9. 9.
    Guo, Y.Q., Zhou, L., Song, H.S.: Dissipation of system and atom in Two-Photon Jaynes-Cummings model with degenerate atomic levels. Int. J. Theor. Phys. 44, 1373–1382 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fang, M.F., Zhou, P., Swain, S.: Entropy squeezing for a two-level atom. J. Mod. Opt. 47, 1043–1053 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fang, M.F., Zhou, P., Swain, S.: Quantum entropic dynamics of a trapped ion in a standing wave. Chin. Phys. Lett. 17, 885–887 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    Mahmoud, A.A., Aballa, M.S., Obada, A.S.F.: Entropy and entanglement of time dependent two-mode Jaynes-Cummings model. J. Opt. B 4, 13–18 (2002)Google Scholar
  13. 13.
    Zou, Y., Li, Y.P.: Quantum entanglement between the two-mode fields and atomic entropy squeezing in the system of a moving atom interacting with two-mode entangled coherent field. Chin. Phys. B 18, 2794–2800 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, J., Shao, B., Zou, J.: Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence. Chin. Phys. B 18, 1517–1528 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, X.J., Zhao, M.Z., Liu, Y.M., Zhou, B.J., Peng, Z.H.: Preparation and control of optimal entropy squeezing states for the moving atom entangment with the field under intensity dependent coupling. Acta. Phys. Sin. 57, 3227–3235 (2010)Google Scholar
  16. 16.
    Zhou, B.J., Liu, Y.M., Zhao, M.Z., Liu, X.J.: Preparation and control of atomic optimal entropy squeezing states for a moving two-level atom under control of the two-mode squeezing vacuum fields. Chin. Phys. B. 19, 124207–12413 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Liu, X.J., Peng, Z.H., Zhou, B.J., Jia, C.X.: Controlling entropy squeezing of atomic qubit in the microwave cavity by manipulating the other atomic qubit outside the cavity. Int. J. Theor. Phys. 54, 1258–1268 (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, X.J., Luo, A., Peng, Z.H., Jia, C.X., Jiang, C., Zhou, B.J.: Generation and preparation of the sustained optimal entropy squeezing state of a motional atom inside vacuum cavity. Int. J. Theor. Phys. 17, 3548–3555 (2017)zbMATHGoogle Scholar
  19. 19.
    Liu, X.J., Zhou, Y.J., Fang, M.F.: Optimal entropy squeezing sudden generation and its control for an effective two-level moving atom entanglement with the two-mode coherent fields. Chin. Phys. B 18, 2307–2314 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Zhou, B.J., Liu, Y.M., Zhao, M.Z., Liu, X.J.: Preparation and control of atomic optimal entropy squeezing states for a moving two-level atom under control of the two-mode squeezing vacuum fields. Chin. Phys. B 19, 124207–124214 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Modern Physics and Department of PhysicsHunan University of Science and TechnologyXiangtanPeople’s Republic of China
  2. 2.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of PhysicsHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations