Tighter Weighted Polygamy Inequalities of Multipartite Entanglement in Arbitrary-Dimensional Quantum Systems

  • Bin ChenEmail author
  • Long-Mei Yang
  • Shao-Ming Fei
  • Zhi-Xi Wang


We investigate polygamy relations of multipartite entanglement in arbitrary-dimensional quantum systems. By improving an inequality and using the βth (0 ≤ β ≤ 1) power of entanglement of assistance, we provide a new class of weighted polygamy inequalities of multipartite entanglement in arbitrary-dimensional quantum systems. We show that these new polygamy relations are tighter than the ones given in Kim (Phys. Rev. A 97, 042332 2018).


Polygamy of entanglement Polygamy relation Weighted polygamy inequality 



This work is supported by the National Natural Science Foundation of China under Grant Nos. 11805143 and 11675113, and Beijing Municipal Commission of Education (KZ201810028042).


  1. 1.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Kim, J.S., Das, A., Sanders, B.C.: Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity. Phys. Rev. A 79, 012329 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Kimand, J.S., Sanders, B.C.: Monogamy of multi-qubit entanglement using Rényi entropy. J. Phys. A: Math. Theor. 43, 445305 (2010)CrossRefGoogle Scholar
  6. 6.
    Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kim, J.S., Sanders, B.C.: Unified entropy, entanglement measures and monogamy of multi-party entanglement. J. Phys. A: Math. Theor. 44, 295303 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Gour, G., Bandyopadhay, S., Sanders, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Buscemi, F., Gour, G., Kim, J.S.: Polygamy of distributed entanglement. Phys. Rev. A 80, 012324 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85, 062302 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94, 062338 (2016)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Cohen, O.: Unlocking hidden entanglement with classical information. Phys. Rev. Lett. 80, 2493 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Yang, L.-M., Chen, B., Fei, S.-M., Wang, Z.-X.: Tighter constraints of multiqubit entanglement, submittedGoogle Scholar
  17. 17.
    Sahoo, S.: Optimal values of bipartite entanglement in a tripartite system. Phys. Lett. A 379, 119 (2015)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematical ScienceTianjin Normal UniversityTianjinChina
  2. 2.School of Mathematical SciencesCapital Normal UniversityBeijingChina
  3. 3.Max-Planck-Institute for Mathematics in the SciencesLeipzigGermany

Personalised recommendations