Nonadiabatic Quantum Search Algorithm with Analytical Success Rate

  • Feng-Guang Li
  • Wan-Su BaoEmail author
  • Tan Li
  • He-liang Huang
  • Shuo Zhang
  • Xiang-Qun Fu


In nonadiabatic quantum search algorithm, it is difficult to calculate the success rate analytically. We develop the nonadiabatic quantum search algorithm by adding a counterdiabatic driving term to the original time-dependent Hamiltonian. The Hamiltonian we structured is diagonal in eigen picture and the time-independent Schrödinger equation is solved analytically. Then, we get an accurate analytical expression of success rate in nonadiabatic quantum search algorithm. Utilizing this expression, a sufficient condition, which can ensure the success rate be one with arbitrary evolution time, was found. Moreover, we can choose the better parameters by calculating the precise success rate according to the expression.


Nonadiabatic quantum search algorithm Counterdiabatic driving Success rate 



This work was supported by the Natural Science Foundation of China (NSFC) under Grant No.11504430.


  1. 1.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46, 493 (1998)CrossRefGoogle Scholar
  3. 3.
    Farhi, E., Goldstone, J., Gutmann, S., Siper, M.: Quantum Computation by Adiabatic Evolution. arXiv:quant-ph/001106 (2000)
  4. 4.
    Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. 51, 165 (1928)ADSCrossRefGoogle Scholar
  5. 5.
    Mizel, A., Lidar, D.A., Mitchell, M.: Simple proof of equivalence between adiabatic quantum computation and the circuit model. Phys. Rev. Lett. 99(07), 070502 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(04), 042308 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Sun, J., Lu, S.F., Liu, F.: Partial adiabatic quantum search algorithm and its extensions. Quantum Inf. Process. 12(8), 2689 (2013)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Oh, S., Kais, S.: Transitionless driving on adiabatic search algorithm. J. Chem. Phys. 141(22), 224108 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Hu, H.Y., Wu, B.: Optimizing quantum adiabatic algorithm. Phys. Rev. A 93(01), 012345 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Pérez, A., Romanelli, A.: Nonadiabatic quantum search agorithms. Phys. Rev. A 76(05), 052318 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Berry, M.V.: Transitionless quantum driving. J. Phys. A 42(36), 365303 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105(12), 123003 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111(10), 100502 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Torrontegui, E., Ibáñez, S., Martínez-Garaot, S., Modugno, M., Campo, A., Gué-Odelin, D., Ruschhaupt, A., Chen, X., Muga, J.G.: Shortcuts to adiabaticity. Adv. At., Mol. Opt. Phys. 62, 117 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Chen, Y.H., Xia, Y., Wu, Q.C., Huang, B.H., Song J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93(05), 052109 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Grover, L.K.: Fixed-point quantum search. Phys. Rev. Lett. 95(15), 150501 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Das, S., Kobes, R., Kunstatter, G.: Energy and efficiency of adiabatic quantum search algorithms. J. Phys. A 36, 2839 (2003)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Roland, J., Cerf, N.J.: Quantum-circuit model of Hamiltonian search algorithms. Phys. Rev. A 68(06), 062311 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? In: Proc. 42nd IEEE Symposium on Foundations of Computer Science, pp. 279–287 (2001)Google Scholar
  20. 20.
    Cleve, R., Gottesman, D., Mosca, M., Somma, R.D., Yonge-Mallo, D.L.: Efficient discrete-time simulations of continuous-time quantum query algorithms. In: Proc. 41st ACM Symposium on Theory of Computing, pp. 409–416 (2009)Google Scholar
  21. 21.
    Hen, I.: Quantum gates with controlled adiabatic evolutions. Phys. Rev. A 91(02), 022309 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Santos, A.C., Sarandy, M.S.: Superadiabatic controlled evolutions and universal quantum computation. Sci. Rep. 5, 15775 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Coulamy, I.B., Santos, A.C., Hen, I., Sarandy, S.: Energetic cost of superadiabatic quantum computation. Front. ICT 3, 19 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henan Key Laboratory of Quantum Information and CryptographyZhengzhou Information Science and Technology InstituteZhengzhouChina

Personalised recommendations