Time Evolution and Temperature Variation of the Squeezing-Chaotic Mixed Two-Mode Optical Field in One-Mode Diffusion Channel

  • Wan Zhi-LongEmail author
  • Fan Hong-Yi
  • Li Heng-Mei
  • Shen Yu-Qiao
  • Wang Zhen


In this paper we theoretically investigate how the squeezing-chaotic mixed two-mode optical field described by the density operator

$$\rho_{0}=\sec h^{2}\lambda \sec h^{2}\tau e^{a^{\dagger }b^{\dagger }\tanh \lambda }\left( \sec h^{2}\lambda \tanh^{2}\tau \right)^{a^{\dagger }a}\left\vert 0\right\rangle_{bb}\left\langle 0\right\vert e^{ab\tanh \lambda } $$
undergoes in a b-mode diffusion channel with the diffusion corfficient κ. We find that in the output state the initial b-mode vacuum |0〉bb 〈0| has evolved into the chaotic state \(\frac {1}{\kappa t + 1}e^{b^{\dagger }b\ln \frac {\kappa t}{ \kappa t + 1}},\) while the squeezing term, \(e^{a^{\dagger }b^{\dagger }\tanh \lambda }\) \(\rightarrow e^{a^{\dagger }b^{\dagger }\frac {\tanh \lambda }{ 1+\kappa t}}\), has been weakened. Measuring b-mode of this new output state leads to a chaotic field with an ascending temperature during the diffusion process, this coincides with the b-mode photon number increasing. We also show that measuring observable in a-mode is not affected by the diffusion in b-mode.


Squeezing-chaotic mixed two-mode optical field Temperature variance Photon number Diffusion channel 



This work is supported by the National Natural Science Foundation of China (Grant Nos.11574295 and 11447202), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No.16KJB140001), the key project of Natural Science Foundation of the Changzhou Institute of Technology of China (Grant No.YN1630).


  1. 1.
    Louisell, W.H.: Quantum Statistical Properties of Radiation. Wiley, New York (1973)zbMATHGoogle Scholar
  2. 2.
    Loudon, R., Knight, P.L.: . J. Mod. Opt. 34, 709 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    Hu, L.Y., Fan, H.Y.: . J. Opt. Soc. Am. B 25, 1955 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    Liu, T.K., Shan, C.J., Liu, J.B., Fan, H.Y.: . Chin. Phys. B 23, 030303 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Fan, H.Y., Klauder, J.R.: . Phys. Rev. A 49, 704 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    Fan, H.Y., Chen, B.Z.: . Phys. Rev. A 53, 2948 (1996)CrossRefGoogle Scholar
  7. 7.
    Fan, H.Y., Lu, H.L., Fan, Y.: . Ann. Phys. 321, 480 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Xu, Y.J., Wang, C.C., Wang, X.C., Fan, H.Y.: . Int. J. Theor. Phys. 51, 1062 (2012)CrossRefGoogle Scholar
  9. 9.
    Ren, G., Ma, J.G., Du, J.M., Yu, H.J.: . Optik 125, 5519 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Wan, Z.L., Fan, H.Y., Wang, Z.: . Chin. Phys. B 24(12), 120301 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Wan, Z.L., Fan, H.Y.: . Optik 154, 616 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    Preskill, J.: Lecture notes for physics 229: Quantum information and computation (California Institution of Technology) (1998)Google Scholar
  13. 13.
    Klauder, J.R., Skagerstam, B.S.: Coherent States. World Scientic, Singapore (1985)CrossRefGoogle Scholar
  14. 14.
    Glauber, R.J.: . Phys. Rev. 130, 2529 (1963)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Glauber, R.J.: . Phys. Rev. 131, 2766 (1963)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical Sciences and Chemical EngineeringChangzhou Institute of TechnologyChangzhouChina
  2. 2.Department of Material Science and EngineeringUniversity of Science and Technology of ChinaHeifeiChina

Personalised recommendations