Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 323–331 | Cite as

Theoretical Aspects of Continuous Variables Quantum Teleportation Based on Phase-Sensitive Four-Wave Mixing

  • Wenting Diao
  • Chunxiao Cai
  • Wenhai Yang
  • Xuerui Song
  • Chongdi Duan
Article
  • 20 Downloads

Abstract

We proposal an experimental scheme of continuous variables quantum teleportation, in which the entangled EPR source are generated by phase-sensitive parametric amplified four-wave mixing. The Bell state measurement is accomplished by means of direct detection for photocurrents and two RF power splitters. It is worth mentioning that the scheme does not require a local oscillator and balanced homodyne detector. Combined with the simple experimental apparatus of parametric amplified four-wave mixing, the proposed system is easily implemented in experiments.

Keywords

Quantum teleportation Four-wave mixing Bell state measurement Phase-sensitive amplifier 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61501368 and 11505135).

References

  1. 1.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., et al.: Phys. Rev. Lett. 87, 077902 (2001)ADSGoogle Scholar
  2. 2.
    Deng, F.G., et al.: Phys. Rev. A 72, 022338 (2005)ADSMathSciNetGoogle Scholar
  3. 3.
    Rigolin, G.: Phys. Rev. A 71, 032303 (2005)ADSGoogle Scholar
  4. 4.
    Romano, R., Loock, P.: Phys. Rev. A 82, 012334 (2010)ADSGoogle Scholar
  5. 5.
    Zhang, Z.J., Man, Z.X.: Phys. Lett. A 242, 55 (2005)ADSGoogle Scholar
  6. 6.
    Yeo, Y., Chua, W.K.: Phys. Rev. Lett. 96, 060502 (2006)ADSGoogle Scholar
  7. 7.
    Cao, H.J., Song, H.S.: Int. J. Theor. Phys. 46, 1636 (2007)Google Scholar
  8. 8.
    Zha, X.W., Ren, K.F.: Phys. Rev. A 77, 014306 (2008)ADSGoogle Scholar
  9. 9.
    Hou, K., Liu, G.H., Zhang, X.Y., Sheng, S.Q.: Quantum. Inf. Process 10, 463–473 (2011)MathSciNetGoogle Scholar
  10. 10.
    Yuan, H., Liu, Y.M., Han, L.F., Zhang, Z.J.: Commun. Theor. Phys. 49, 1191 (2008)ADSGoogle Scholar
  11. 11.
    Bouwmeester, D., Pan, J.W., Mattle, K.: Nature 390, 575C579 (1997)Google Scholar
  12. 12.
    Takeda, S., Mizuta, T., Fuwa, M., et al.: Nature 500(7462), 315–318 (2013)ADSGoogle Scholar
  13. 13.
    Krauter, H., Salart, D., Muschik, C.A., et al.: Nat. Phys. 9(7), 400–404 (2013)Google Scholar
  14. 14.
    Davidovich, L., Zagury, N., Brune, M., et al.: Phys. Rev. A 50(2), R895 (1994)ADSGoogle Scholar
  15. 15.
    Braunstein, S.L., Kimble, H.: J. Phys. Rev. Lett. 80, 869 (1998)ADSGoogle Scholar
  16. 16.
    van Loock, P., Braunstein, S.L., et al.: Phys. Rev. A 62(2), 022309 (1999)Google Scholar
  17. 17.
    Furusawa, A., Sorensen, J.L., Braunstein, S.L., et al.: Science 282(5389), 706–709 (1998)ADSGoogle Scholar
  18. 18.
    Zhang, J., Peng, K.: Phys. Rev. A 62(6), 597–604 (2000)Google Scholar
  19. 19.
    Bowen, W.P., Treps, N., Schnabel, R., et al.: Phys. Rev. Lett. 89(25), 253601 (2002)ADSGoogle Scholar
  20. 20.
    Braunstein, S.L., Fuchs, C.A., Kimble, H.J., et al.: Phys. Rev. A 64(2), 022321 (2000)ADSGoogle Scholar
  21. 21.
    Grosshans, F., Grangier, P.: Phys. Rev. A 64(1), 010301(R) (2001)ADSMathSciNetGoogle Scholar
  22. 22.
    Wu, L.-A., Kimble, H.J., Hall, J.L., et al.: Phys. Rev. Lett. 57, 2520 (1986)ADSGoogle Scholar
  23. 23.
    Ou, Z.Y., Pereira, S.F., Kimble, H.J., et al.: Phys. Rev. Lett. 68, 3663 (1992)ADSGoogle Scholar
  24. 24.
    Mccormick, C.F., Boyer, V., Arimondo, E., et al.: Opt. Lett. 32(2), 178–80 (2007)ADSGoogle Scholar
  25. 25.
    Mccormick, C.F., Marino, A.M., Boyer, V., et al.: Phys. Rev. A 78(4), 4702–4705 (2008)Google Scholar
  26. 26.
    Boyer, V., Marino, A.M., Pooser, R.C., et al.: Science 321(5888), 544 (2008)ADSGoogle Scholar
  27. 27.
    Marino, A.M., Pooser, R.C., Boyer, V., et al.: Nature 457, 859–62 (2009)ADSGoogle Scholar
  28. 28.
    Jing, J., Liu, C., Zhou, Z., et al.: Appl. Phys. Lett. 99, 011110 (2011)ADSGoogle Scholar
  29. 29.
    Kong, J., Jing, J., Wang, H., et al.: Appl. Phys. Lett. 102, 011130 (2013)ADSGoogle Scholar
  30. 30.
    Hudelist, F., Kong, J., Liu, C., et al.: Nat. Commun. 5, 3049 (2014)Google Scholar
  31. 31.
    Qin, Z., Cao, L., Wang, H., et al.: Phys. Rev. Lett. 113, 23602 (2014)ADSGoogle Scholar
  32. 32.
    Chen, H., Zhang, X., Zhu, D., et al.: Phys. Rev. A 90, 043846 (2014)ADSGoogle Scholar
  33. 33.
    Li, C., Jiang, Z., Zhang, Y., et al.: Phys. Rev. Appl 7, 014023 (2017)ADSGoogle Scholar
  34. 34.
    Abdisa, G., Ahmed, I., Wang, X., et al.: Phys. Rev. A 94, 023849 (2016)ADSGoogle Scholar
  35. 35.
    Zhang, D., Li, C., Zhang, Z., et al.: Phys. Rev. A 96, 043847 (2017)ADSGoogle Scholar
  36. 36.
    Fang, Y., Jing, J.: Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor[J]. New J. Phys. 17, 023027 (2015)ADSGoogle Scholar
  37. 37.
    Corzo, N., Marino, A.M., Jones, K.M., et al.: Opt. Express 19, 21358–69 (2011)ADSGoogle Scholar
  38. 38.
    Corzo, N.V., Marino, A.M., Jones, K.M., et al.: Phys. Rev. Lett. 109, 43602 (2012)ADSGoogle Scholar
  39. 39.
    Corzo, N.V., Glorieux, Q., Marino, A.M., et al.: Phys. Rev. A 88, 43836 (2013)ADSGoogle Scholar
  40. 40.
    Hou, P.Y., Huang, Y., Yuan, X., et al.: Nat. Commun 7, 11736 (2016)ADSGoogle Scholar
  41. 41.
    Friis, N., Lee, A.R., Truong, K., et al.: Phys. Rev. Lett. 110, 113602 (2013)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wenting Diao
    • 1
  • Chunxiao Cai
    • 1
  • Wenhai Yang
    • 1
  • Xuerui Song
    • 1
  • Chongdi Duan
    • 1
  1. 1.China Academy of Space Technology (Xi’an)Xi’anPeople’s Republic of China

Personalised recommendations