International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 308–322 | Cite as

Quantum Image Encryption Algorithm Based on Quantum Key Image

  • Jian WangEmail author
  • Ya-Cong Geng
  • Lei Han
  • Ji-Qiang Liu


Quantum image encryption is a hot research topic in recent years. In this paper, a novel quantum image encryption algorithm based on quantum key image is presented, which has low complexity than other algorithms. The quantum key image is a special quantum image which is used to store the encryption keys. The encryption keys are generated by a cryptographic algorithm, and are prepared into the gray value of the quantum key image. Based on this quantum key image, the plain image does the XOR operations with it bit by bit. The circuit of the encryption algorthm is given, and the numerical simulations and theoretical analyses are done. The proposed encryption quantum image algorithm is efficiency, and it has large key space and lower computational complexity.


Quantum image encryption Quantum key image XOR operation Quantum circuit 



This work is supported by the Foundation of Science and Technology on Information Assurance Laboratory (No. KJ-15-004). Both authors thank the reviewer for his pertinent comments.


  1. 1.
    Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process 15(1), 1–35 (2016)ADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Venegas-Andraca, S.E., Bose, S.: Storing processing, and retrieving an image using quantum mechanics. Proc. SPIE - Int. Soc. Opt. Eng. 5105(8), 1085–1090 (2003)Google Scholar
  3. 3.
    Yuan, S., Mao, X., Xue, Y., et al.: SQR: A simple quantum representation of infrared images. Quantum Inf. Process 13(6), 1353–1379 (2014)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process 9(1), 1–11 (2010)MathSciNetGoogle Scholar
  5. 5.
    Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process 10(1), 63–84 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)ADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest neighbor interpolation with integer scaling ratio. Quantum Inf. Process 14(11), 4001–4026 (2015)ADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process 13(5), 1223–1236 (2014)ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process 13(7), 1545–1551 (2014)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 2 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Strategies for designing geometric transformations on quantum images. Theor. Comput. Sci. 412, 1406–1418 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)zbMATHGoogle Scholar
  13. 13.
    Jiang, N., Lu, X.W., Hu, H., Dang, Y.J., Cai, Y.Q.: A novel quantum image compression method based on JPEG. Int. J. Theor. Phys. 57(3), 611–636 (2018)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Song, X.H., Niu, X.M.: Comment on: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding. Quantum Inf. Process 13(6), 1301–1304 (2014)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Tan, R.C., Lei, T., Zhao, Q.M., et al.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum fourier transform. Int. J. Theor. Phys. 55, 1–17 (2016)zbMATHGoogle Scholar
  16. 16.
    Ashutosh, S.D.: Robust technique for image encryption and decryption using discrete fractional fourier transform with random phase masking. Procedia Technol. 10(1), 707–714 (2013)Google Scholar
  17. 17.
    Li, J., Parchatka, U., Fischer, H.: Applications of wavelet transform to quantum cascade laser spectrometer for atmospheric trace gas measurements. Appl. Phys. B 108(4), 951–963 (2012)ADSGoogle Scholar
  18. 18.
    Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)zbMATHGoogle Scholar
  19. 19.
    Zhou, N.R., Hua, T.X., Gong, L.H., et al.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding. Quantum Inf. Process 14(4), 1193–1213 (2015)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)MathSciNetGoogle Scholar
  21. 21.
    Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intelligent Data analysis and its Applications, Volume II 298, 243–250 (2014)Google Scholar
  22. 22.
    Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E., Yang, H.M.: Video encryption and decryption on quantum computers. Int. J. Theor. Phys. 54(8), 2893–2904 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Wang, H., Wang, J., Geng, Y.C., et al.: Quantum image encryption based on iterative framework of frequency-spatial domain transforms. Int. J. Theor. Phys. 56 (10), 3029–3049 (2017)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Gong, L.H., He, X.T., Cheng, S., et al.: Quantum image incryption algorithm based on quantum image XOR operations. Int. J. Theor. Phys. 55(7), 3234–3250 (2016)zbMATHGoogle Scholar
  25. 25.
    Yan, F, Iliyasu, A.M., Le, P.Q., et al.: Quantum image processing: A review of advances in its security technologies. Int. J. Quantum Inf. 15(3), 1730001 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Heys, H.M.: Analysis of the statistical cipher feedback mode of block ciphers. IEEE Trans. Comput. 52(1), 77–92 (2003)Google Scholar
  27. 27.
    Ahmad, J., Ahmed, F.: Security evaluation of image encryption schemes. Int. J. Video Efficiency Anal. Image Process. Netw. Sec. 12(4), 18–31 (2012)MathSciNetGoogle Scholar
  28. 28.
    Elashry, I., Allah, O., Abbas, A., El-Rabaie, S., El-Samie, F.: Homomorphic image encryption. J. Electron. Imaging 18, 033002 (2009)ADSGoogle Scholar
  29. 29.
    Abd EI-Latif, A.A., Niu, X.M., Amin, M.: A new image cipher in time and frequency domains. Opt. Commun. 285, 4241–4251 (2012)ADSGoogle Scholar
  30. 30.
    Shende, V.V., Markov, I.L.: On the CNOT-cost of TOFFOLI gates. Quantum Inf. Comput. 9(5), 461–486 (2008)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Liang, H.R., Tao, X.Y., Zhou, N.R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process 15(7), 2701–2724 (2016)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jian Wang
    • 1
    • 2
    Email author
  • Ya-Cong Geng
    • 1
    • 2
  • Lei Han
    • 2
  • Ji-Qiang Liu
    • 1
  1. 1.Beijing Key Laboratory of Security and Privacy in Intelligent TransportationBeijing Jiaotong UniversityBeijingChina
  2. 2.Science and Technology on Information Assurance LaboratoryBeijingChina

Personalised recommendations