International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 282–293 | Cite as

Tripartite Controlled Remote State Preparation via a Seven-Qubit Entangled State and Three Auxiliary Particles

  • Xin-Wei Zha
  • Xiao-Yuan YuEmail author
  • Yong Cao


Recently, Sang and Nie (Int. J. Theor. Phys. 10, 1007 2017), proposed a protocol of deterministic tripartite controlled remote state preparation via a seven-qubit entangled state as quantum channel. In this paper, we present a novel scheme for tripartite controlled remote state preparation via a seven-qubit entangled state and three auxiliary particles. Our program is proposed by selecting a new set of measurement bases to enhance the implementation of scheme, and it is more perfect and efficient than the previous ones.


Tripartite controlled remote state preparation Measurement bases Recovery operations 



The work is supported by the National Science Foundation of Shannxi Province(2017JQ6024).


  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Deng, F.G., Li, X.H., Li, C.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459–464 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Cardoso, W.B., Avelar, A.T., Baseia, B., Almeida, N.G.D.: Teleportation of entangled states without Bell-state measurement. Phys. Rev. A 72, 045802 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Bouwmeester, D., Pan, J.W., Mattle, K.: Experimental quantum teleportation. Nature 390, 575–579 (1997)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Yeo, Y., Chua, W.K.: Teleportation and Dense Coding with Genuine Multipartite Entanglement. Phys. Rev. Lett. 96, 1060502 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015)CrossRefzbMATHGoogle Scholar
  7. 7.
    Li, Y.H., Li, X.L., Nie, L.P.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zheng, H.B., Zhang, X., Zhang, Z.Y., Tian, Y.L., Chen, H.X., Li, C.B., Zhang, Y.P.: Parametric amplification and cascaded-nonlinearity processes in common atomic system. Sci. Rep. 3, 1885 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Chen, H.X., Zhang, Y.Q., Yao, X., Wu, Z.K., Zhang, X., Zhang, Y.P.: Parametrically amplified bright-state polariton of four- and six-wave mixing in an optical ring cavity. Sci. Rep. 4, 3619 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Li, Z.P., Wang, X.L., Li, C.Y., Zhang, Y.F., Wen, F., Ahmed, I., Zhang, Y.P.: Two-mode entanglement of dressed parametric amplification four-wave mixing in an atomic ensemble. Laser Phys. Lett. 13(2), 025402 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, H.X., Zhang, X., Zhu, D.Y., Yang, C., Jiang, T., Zheng, H.B., Zhang, Y.P.: Dressed four-wave mixing second-order Talbot effect. Phys. Rev. A 90, 043846 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Kurucz, Z., Adam, P.: Preparable ensembles for remote state preparation. J. Opt. B Quantum Semiclass Opt. 7, 135 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remotestate preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Xia, Y., Song, J., Ning, Y., Lu, P.M., Song, H.S.: Remote preparation of n photon ghz polarization entangled states within a network. Jetp Lett. 90, 735–738 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Devetak, I., Berger, T.: Low-entanglementremotestatepreparation. Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40, 3719 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Hou, K., Wang, J., Yuan, H., Shi, S.H.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Remote preparation of an arbitrary two-qubit state with three-party. Int. J. Theor. Phys. 49, 1262 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, Z.Y.: Controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Commun. Theor. Phys. 55, 244 (2011)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, Z.Y., Song, J.F.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410 (2011)CrossRefzbMATHGoogle Scholar
  29. 29.
    Chen, X.B., Ma, S.Y., Yuan, S.Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, Y.H., Liang, H.W.: One-party controlled minimum remote state preparation of equatorial n-qubit states. Int. J. Quantum Inf. 12, 1450038 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qubit state via positive operator-valued measurement. Int. J. Quantum Inf. 10, 1250062 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Liao, Y.M., Zhou, P., Qin, X.C., He, Y.H., Qin, J.S.: Controlled remote preparing of an arbitrary 2-qudit state with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61, 315 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote teleportation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent ofentanglement degree ofthequantum channel. Phys. Lett. 378, 3582 (2014)CrossRefzbMATHGoogle Scholar
  36. 36.
    An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B 42, 125501 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Wang, D., Ye, L.: Multi party-controlled joint remote preparation. Quantum Inf. Process. 12, 3223 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Sang, M.H., Nie, Y.Y.: Deterministic tripartite controlled remote state preparation. Int. J. Theor. Phys. 10, 1007 (2017)zbMATHGoogle Scholar
  40. 40.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations