Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 255–260 | Cite as

Cyclic Controlled Joint Remote State Preparation by Using a Ten-Qubit Entangled State

  • Zhi-wen Sang
Article

Abstract

We propose a scheme of cyclic controlled joint remote state preparation by using a ten-qubit entangled state. In our scheme, Alice can remotely prepare an arbitrary single-qubit quantum state for Bob, and Bob can remotely prepare a desired single-qubit quantum state on Charlie’s side, and Charlie can also remotely prepare an arbitrary single-qubit quantum state for Alice. It is shown that only if the senders Alice, Bob, Charlie and the controller David collaborate with each other, the cyclic controlled joint remote state preparation can be realized successfully.

Keywords

Quantum information Controlled remote state preparation Ten-qubit entangled state 

References

  1. 1.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A. 62, 012313 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Bennett, C.H., DiVincenzo, D.P.: Shor, et al.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Wei, J., Shi, L., Zhu, Y., et al.: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17, 70 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhao, H., Huang, L.: Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 56, 720 (2017)CrossRefzbMATHGoogle Scholar
  8. 8.
    Wang, M.M., Qu, Z.G., Wang, W., et al.: Effect of noise on deterministic joint remote preparation of an arbitrary two-qubit state. Quantum Inf. Process. 16, 140 (2017)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wang, X., Mo, Z.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56, 1052 (2017)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zhang, D., Zha, X.W., Duan, Y.J., et al.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820 (2016)CrossRefzbMATHGoogle Scholar
  14. 14.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, Y.H., Li, X.L., Sang, M.H., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, Y.H., Xiang, T., Nie, Y.Y., et al.: Nonlinear interaction between broadband single-photon-level coherent states. Photon. Res. 5, 324 (2017)Google Scholar
  17. 17.
    Li, Y.H., Xiang, T., Nie, Y.Y., et al.: Spectral compression of single-photon-level laser pulse. Sci. Rep. 7, 43494 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Xiang, T., Sun, Q.C., Li, Y.H., et al.: Single-photon frequency conversion via cascaded quadratic nonlinear processes. Phys. Rev. A. 97, 063810 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Electronic InformationShangrao Normal UniversityShangraoChina

Personalised recommendations