Advertisement

International Journal of Theoretical Physics

, Volume 58, Issue 1, pp 221–246 | Cite as

A Novel Full Adder/Subtractor in Quantum-Dot Cellular Automata

  • Mohammad MoslehEmail author
Article
  • 30 Downloads

Abstract

Quantum-dot cellular automata (QCA), one of the alternative CMOS technologies at a nano scale, promises to design digital circuits with extra low-power, extremely dense and high speed structures. In this paper, a new QCA gate with three inputs and two outputs is first introduced; this operates on the basis of cell interactions. Then, low complexity and high-speed QCA full-adder and full-subtractor structures are proposed by applying different formulations, which are based on the introduced gate. Finally, a novel QCA full adder/subtractor is presented with the synergy of the proposed QCA full-adder and full-subtractor structures as well as a proposed optimal single layer 2:1 QCA multiplexer. The proposed designs are simulated using the QCA Designer 2.0.3. The simulation results confirm that the proposed circuits work well. A comparative analysis indicates the superiority of the proposed designs compared to the other related designs. Moreover, the QCAPro power estimator tool is utilized to evaluate the power dissipation of the proposed designs.

Keywords

Nanotechnology Quantum-dot cellular automata (QCA) Full-adder Full-subtractor 

References

  1. 1.
    Lent, C.S., et al.: Quantum cellular automata. Nanotechnology. 4(1), 49–57 (1993)ADSGoogle Scholar
  2. 2.
    Toth, G., Lent, C.S.: Quasiadiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)ADSGoogle Scholar
  3. 3.
    Wilson, M., et al.: Nanotechnology: basic science and emerging technologies. CRC Press, London (2002)Google Scholar
  4. 4.
    Amlani, I., et al.: Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl. Phys. Lett. 77(5), 738–740 (2000)ADSGoogle Scholar
  5. 5.
    Zhang, R., et al.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3(4), 443–450 (2004)ADSMathSciNetGoogle Scholar
  6. 6.
    “The International Technology Roadmap for Semiconductors (ITRS): Semiconductor Associations,” http://itrs.net
  7. 7.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)ADSGoogle Scholar
  8. 8.
    Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)ADSGoogle Scholar
  9. 9.
    A. Vetteth, et al., Quantum-dot cellular automata carry-look-ahead adder and barrel shifter. Proc. IEEE Emerging Telecommunications Technologies Conference, 2002, pp. 2–4Google Scholar
  10. 10.
    Cho, H., Swartzlander Jr., E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hänninen, I., Takala, J.: Binary adders on quantum-dot cellular automata. Journal of Signal Processing Systems. 58(1), 87–103 (2010)Google Scholar
  12. 12.
    Navi, K., et al.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7(8), 1546–1553 (2010)Google Scholar
  13. 13.
    Kianpour, M., et al.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80(7), 1404–1414 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Abedi, D., et al.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14(3), 497–504 (2015)ADSMathSciNetGoogle Scholar
  15. 15.
    Sasamal, T.N., et al.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik-International Journal for Light and Electron Optics. 127(20), 8576–8591 (2017)Google Scholar
  16. 16.
    S.K. Lakshmi, et al., Design of subtractor using nanotechnology based QCA. Proc. IEEE International Conference onCommunication Control and Computing Technologies (ICCCCT), IEEE, 2010, pp. 384–388Google Scholar
  17. 17.
    Dallaki, H., Mehran, M.: Novel Subtractor Design Based on Quantum-Dot Cellular Automata (QCA) Nanotechnology. International Journal of Nanoscience and Nanotechnology. 11(4), 257–262 (2015)Google Scholar
  18. 18.
    Labrado, C., Thapliyal, H.: Design of adder and subtractor circuits in majority logic-based field-coupled QCA nanocomputing. Electron. Lett. 52(6), 464–466 (2016)Google Scholar
  19. 19.
    Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017)zbMATHGoogle Scholar
  20. 20.
    H. Cho and E. Earl Jr, Serial parallel multiplier design in quantum-dot cellular automata. Proc. 18th IEEE Symposium on Computer Arithmetic, IEEE, 2007, pp. 7–15Google Scholar
  21. 21.
    Basu, S., Bal, A.: Realization of Combinational Multiplier using Quantum Cellular Automata. Int. J. Comput. Appl. 99(19), 1–6 (2014)Google Scholar
  22. 22.
    Faraji, H., Mosleh, M.: A fast wallace-based parallel multiplier in quantum-dot cellular automata. International Journal of Nano Dimension. 9(1), 68–78 (2018)Google Scholar
  23. 23.
    S.-W. Kim and E.E. Swartzlander, “Restoring divider design for quantum-dot cellular automata,” Proc. 11th IEEE Conference on Nanotechnology IEEE, 2011, pp. 1295–1300Google Scholar
  24. 24.
    Sayedsalehi, S., et al.: Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf. Sci. 311, 86–101 (2015)MathSciNetGoogle Scholar
  25. 25.
    Mohammadi, M., et al.: Design of non-restoring divider in quantum-dot cellular automata technology. IET Circuits, Devices & Systems. 11(2), 135–141 (2017)Google Scholar
  26. 26.
    Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. International Journal of Circuit Theory and Applications. 38(8), 771–785 (2010)zbMATHGoogle Scholar
  27. 27.
    Mukhopadhyay, D., Dutta, P.: Quantum cellular automata based novel unit 2: 1 multiplexer. Int. J. Comput. Appl. 43(2), 22–25 (2012)Google Scholar
  28. 28.
    Hayati, M., Rezaei, A.: An efficient and optimized multiplexer design for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 11(1), 297–302 (2014)Google Scholar
  29. 29.
    Rashidi, H., Rezai, A.: Design of Novel Efficient Multiplexer Architecture for Quantum-dot Cellular Automata. Journal of Nano-and Electronic Physics. 9(1), 1012–1011 (2017)Google Scholar
  30. 30.
    Nejad, M.Y., Mosleh, M.: A Review on QCA Multiplexer Designs. Majlesi Journal of Electrical Engineering. 11(2), 69 (2017)Google Scholar
  31. 31.
    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2013)Google Scholar
  32. 32.
    K. Walus, et al., RAM design using quantum-dot cellular automata, Proc. NanoTechnology Conference, 2003, pp. 160–163Google Scholar
  33. 33.
    Angizi, S., et al.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46(1), 43–51 (2015)Google Scholar
  34. 34.
    Dehkordi, M.A., et al.: Novel RAM cell designs based on inherent capabilities of quantum-dot cellular automata. Microelectron. J. 42(5), 701–708 (2011)MathSciNetGoogle Scholar
  35. 35.
    Chaharlang, J., Mosleh, M.: An Overview on RAM Memories in QCA Technology. Majlesi Journal of Electrical Engineering. 11(2), 9 (2017)Google Scholar
  36. 36.
    B. Sen, et al., QCA multiplexer based design of reversible ALU. Proc. International Conference on Circuits and Systems (ICCAS),, IEEE, 2012, pp. 168–173Google Scholar
  37. 37.
    Sen, B., et al.: Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)Google Scholar
  38. 38.
    Lent, C.S., et al.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)ADSGoogle Scholar
  39. 39.
    S.-H. Shin, et al., “Wire-crossing technique on quantum-dot cellular automata,” Proc. 2nd International Conference on Next Generation Computer and Information Technology, 2013, pp. 52–57Google Scholar
  40. 40.
    Kim, K., et al.: The robust QCA adder designs using composable QCA building blocks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. 26(1), 176–183 (2007)Google Scholar
  41. 41.
    Qanbari, M., Sabbaghi-Nadooshan, R.: Two Novel quantum-dot cellular automata full adders. Journal of Engineering. 2013, 1–6 (2013)Google Scholar
  42. 42.
    Angizi, S., et al.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. Journal of Low Power Electronics. 10(2), 259–271 (2014)Google Scholar
  43. 43.
    S. Hashemi and K. Navi, A novel robust QCA full-adder. Book A novel robust QCA full-adder, Series A novel robust QCA full-adder 11, ed., Editor ed. eds., Procedia Materials Science, 2015, pp. 376–380Google Scholar
  44. 44.
    Ahmad, F., et al.: Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16, 8–15 (2016)MathSciNetGoogle Scholar
  45. 45.
    Kassa, S.R., Nagaria, R.: A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016)Google Scholar
  46. 46.
    Heikalabad, S.R., et al.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 1–12 (2017)Google Scholar
  47. 47.
    Navi, K., et al.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41(12), 820–826 (2010)Google Scholar
  48. 48.
    Hashemi, S., et al.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays. 7(2), 177–189 (2012)Google Scholar
  49. 49.
    Ahmad, F., et al.: Novel Adder Circuits Based On Quantum-Dot Cellular Automata (QCA). Circuits and Systems. 5(06), 142 (2014)Google Scholar
  50. 50.
    Roohi, A., et al.: A symmetric quantum-dot cellular automata design for 5-input majority gate. J. Comput. Electron. 13(3), 701–708 (2014)Google Scholar
  51. 51.
    Sousan, H.-a.B., et al.: Designing and Implementing a Fast and Robust Full-Adder in Quantum-Dot Cellular Automata (QCA) Technology. Journal of Advances in Computer Research. 6(1), 27–45 (2015)Google Scholar
  52. 52.
    Mohammadi, M., et al.: An efficient design of full adder in quantum-dot cellular automata (QCA) technology. Microelectron. J. 50, 35–43 (2016)Google Scholar
  53. 53.
    Safavi, A., Mosleh, M.: Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate. International Journal of Nanoscience and Nanotechnology. 12(1), 55–69 (2016)Google Scholar
  54. 54.
    Walus, K., et al.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)ADSGoogle Scholar
  55. 55.
    J.I. Reshi and M.T. Banday, Efficient Design of Nano Scale Adder and Subtractor Circuits using Quantum dot Cellular Automata. Book Efficient Design of Nano Scale Adder and Subtractor Circuits using Quantum dot Cellular Automata, Series Efficient Design of Nano Scale Adder and Subtractor Circuits using Quantum dot Cellular Automata, ed., Editor ed. eds., 2016, pp. 89–94Google Scholar
  56. 56.
    S.-W. Kim, Design of parallel multipliers and dividers in quantum-dot cellular automata. UT Electronic Theses and Dissertations, 2011Google Scholar
  57. 57.
    A.N. Bahar, et al., A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis. Alexandria Engineering Journal, 2017, pp. 1–10Google Scholar
  58. 58.
    T. Teodosio and L. Sousa, QCA-LG: A tool for the automatic layout generation of QCA combinational circuits. Proc. Norchip, 2007, IEEE, 2007, pp. 1–5Google Scholar
  59. 59.
    M. Askari, et al., Digital design using quantum-dot cellular automata (a nanotechnology method). Proc. International Conference on Computer and Communication Engineering,, IEEE, 2008, pp. 952–955Google Scholar
  60. 60.
    V. Mardiris, et al., “Design and simulation of a QCA 2 to 1 multiplexer,” Proc. 12th WSEAS International conference on computers, Heraklion, Greece, 2008, pp. 572–576Google Scholar
  61. 61.
    S. Hashemi, et al., “A novel QCA multiplexer design,” Proc. International Symposium onTelecommunications,, IEEE, 2008, pp. 692–696Google Scholar
  62. 62.
    Roohi, A., et al.: A novel architecture for quantum-dot cellular automata multiplexer. International Journal of Computer Science Issues. 8, 1 (2011)Google Scholar
  63. 63.
    Kianpour, M., Sabbaghi-Nadooshan, R.: Optimized Design of Multiplexor by Quantum-dot CellularAutomata. International Journal of Nanoscience and Nanotechnology. 9(1), 15–24 (2013)Google Scholar
  64. 64.
    Chabi, A.M., et al.: Efficient QCA exclusive-or and multiplexer circuits based on a nanoelectronic-compatible designing approach. International Scholarly Research Notices. 2014, 1–9 (2014)Google Scholar
  65. 65.
    Sen, B., et al.: Towards modular design of reliable quantum-dot cellular automata logic circuit using multiplexers. Comput. Electr. Eng. 45, 42–54 (2015)Google Scholar
  66. 66.
    Khosroshahy, M.B., et al.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017)Google Scholar
  67. 67.
    S.-S. Ahmadpour and M. Mosleh, A novel fault-tolerant multiplexer in quantum-dot cellular automata technology. The Journal of Supercomputing, 2018, pp. 1–21Google Scholar
  68. 68.
    Sen, B., et al.: Towards the hierarchical design of multilayer QCA logic circuit. J. Comput. Sci. 11, 233–244 (2015)Google Scholar
  69. 69.
    Rashidi, H., et al.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)Google Scholar
  70. 70.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)ADSGoogle Scholar
  71. 71.
    Srivastava, S., et al.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)ADSGoogle Scholar
  72. 72.
    S. Srivastava, et al., QCAPro-an error-power estimation tool for QCA circuit design. Book QCAPro-an error-power estimation tool for QCA circuit design, Series QCAPro-an error-power estimation tool for QCA circuit design, ed., Editor ed. eds., IEEE, 2011, pp. 2377–2380Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Engineering, Dezful BranchIslamic Azad UniversityDezfulIran

Personalised recommendations